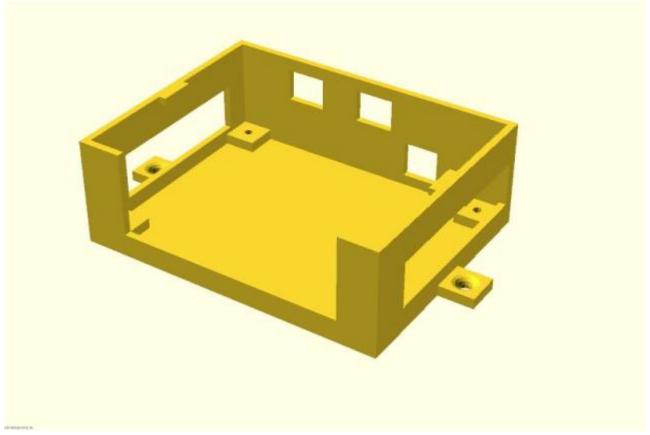
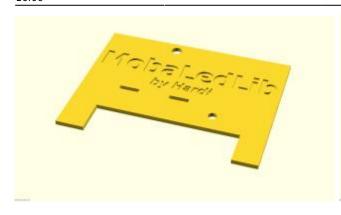
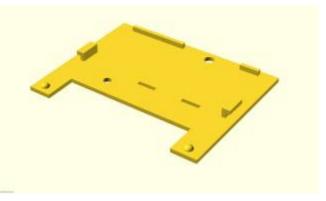
3D-Gehäuse für MobaLedLib-Baugruppen

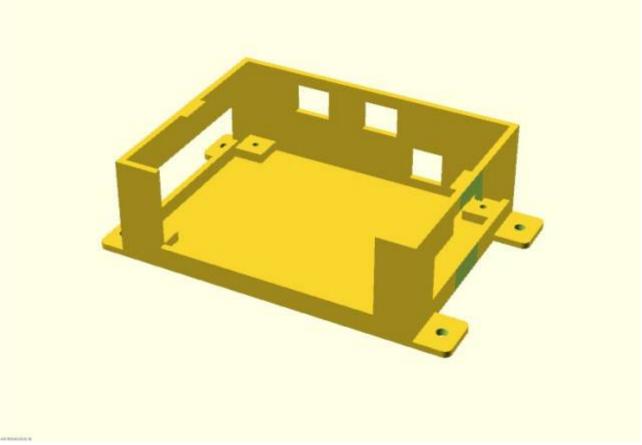
Gehäuse für Hauptplatine **100** Vers. 1.0 - 1.7, nicht geeignet für die "neue" Platine 101 Vers. 1.8


Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ***




Die folgenden Gehäuse passen nur für Hauptplatinen bis zur Version 1.7 (100)!

Die Hauptplatine ab Version 1.8 (101) wird einige Millimeter breiter.


Ronny (Worldworms) aus dem Stummiforum hat für die Hauptplatine der MobaLedLib ein Gehäuse und einen passenden Deckel entworfen.

Für die neueren Versionen der Hauptplatine ist bei der Verwendung des Selectrixinterfaces ein angepasstes Gehäuse notwendig.

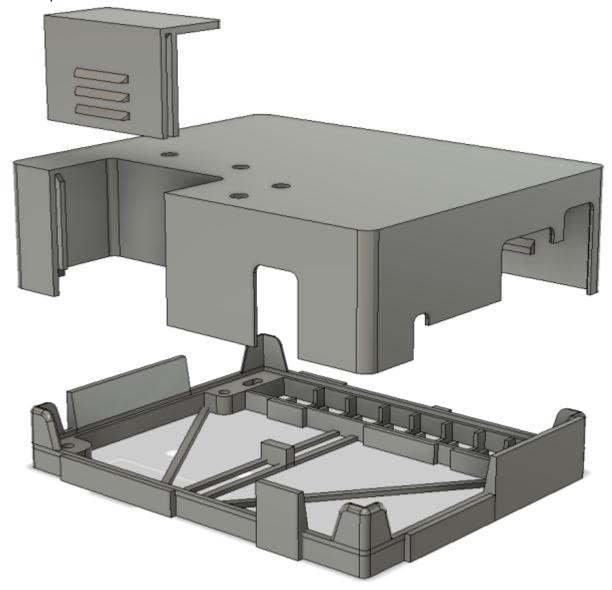
Die Druckdaten sind hier zu finden:

 $https://github.com/Hardi-St/MobaLedLib_Docu/tree/master/3D_Daten_fuer_die_MobaLedLib/MLL-100-Hauptplatine-V1.6$

Direkter Downloadlink

Gehäuse für Hauptplatine **101** Vers. 1.8.x, nicht geeignet für die "alte" Platine 100 Vers. 1.7 und kleiner

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ***



Die folgenden Gehäuse passen nur für Hauptplatinen ab Version 1.8.0 (101)!

Die Hauptplatine bis Version 1.7 (100) war einige Millimeter schmaler.

Michael (raily74) aus dem Stummiforum hat für die Hauptplatine der MobaLedLib ein Gehäuse und einen passenden Deckel entworfen.

Details zur Konstruktion:

- Zu verwenden ist das Gehäuse ausschließlich in Verbindung mit einem oder zwei Arduinos.
- Für den Einsatz eines ESP-32 wird ein separates Gehäuse entwickelt.
- Die Platine kann mit und ohne Mini-Verteiler im Gehäuse befestigt werden, da entsprechende Bohrungen vorhanden sind.
- Ein separates (kleineres) Gehäuse für die Verwendung ohne Mini-Verteiler ist nicht vorgesehen.
- Für die Montage an einer (vorzugsweise senkrechten) Wand wird nur der Rahmen ohne Boden benötigt (spart PLA).
- Für die Verwendung auf der Werkbank wird anstelle des Rahmens der Boden verwendet.

- 16:06
 - Als Lichtleiter kommt ein handelsüblicher 4mm LWL zum Einsatz, ggf. müssen die Bohrungen mit einem 4mm Bohrer nachbearbeitet werden.
 - Elefantenfüße sind sowohl am Rahmen, als auch an der Kappe und dem Deckel im Bereich der Kappe zu entfernen oder in Ultimaker Cura (ab 5.2) zu unterdrücken.
 - Der Deckel wird nur durch die Passform bzw. die Reibung zwischen den Teilen gehalten, was eine Montage über Kopf etwas einschränkt.
 - Alle Kabelverbindungen können beim Abnehmen des Deckels bestehen bleiben. Zum einmaligen Programmieren des DCC-Arduinos muss der Deckel entfernt werden.
 - Für die Verwendung von Selectrix oder Loconet muss das Gehäuse seitlich aufgeschnitten werden, der Ausschnitt ist auf der Innenseite angedeutet.
 - Boden = Wie Rahmen, jedoch unten geschlossen.
 - Deckel = Wie im Bild zu sehen zum Aufstecken auf Rahmen oder Boden.
 - Kappe = Wie im Bild zu sehen zum Schließen der Taster-Aussparung.
 - Rahmen = Wie im Bild zu sehen offene Konstruktion zur Montage an einer Wand.
 - Rahmen solo = Einzelner Rahmen ohne Deckelfunktion. Reiner Abstandshalter zur Montage an Wand.

Die Druckdaten sind hier zu finden: Gehäuse 101

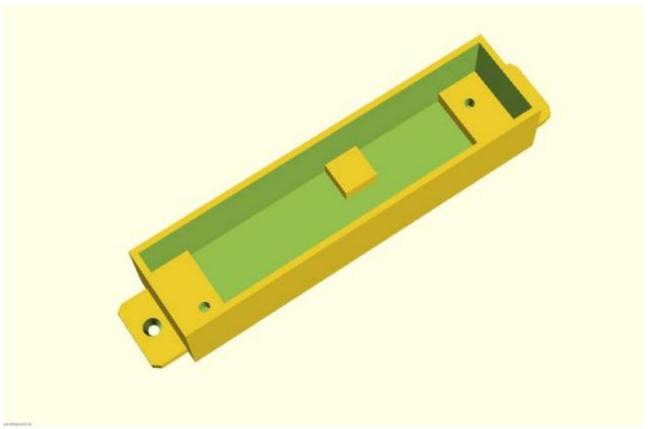
Gehäuse mit ESP-Board:

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ***

Die folgenden Gehäuse passen nur für Hauptplatinen bis zur Version 1.7 (100)! Die Hauptplatine ab Version 1.8 (101) wird einige Millimeter breiter.

Beim Gehäuse mit ESP-Adapterplatine gibt es zahlreiche Varianten. Alle Varianten setzen voraus, dass die Adapterplatine in drei Teile geteilt wird, da die LED-Bus-Platine einzeln im Gehäuse platziert wird.

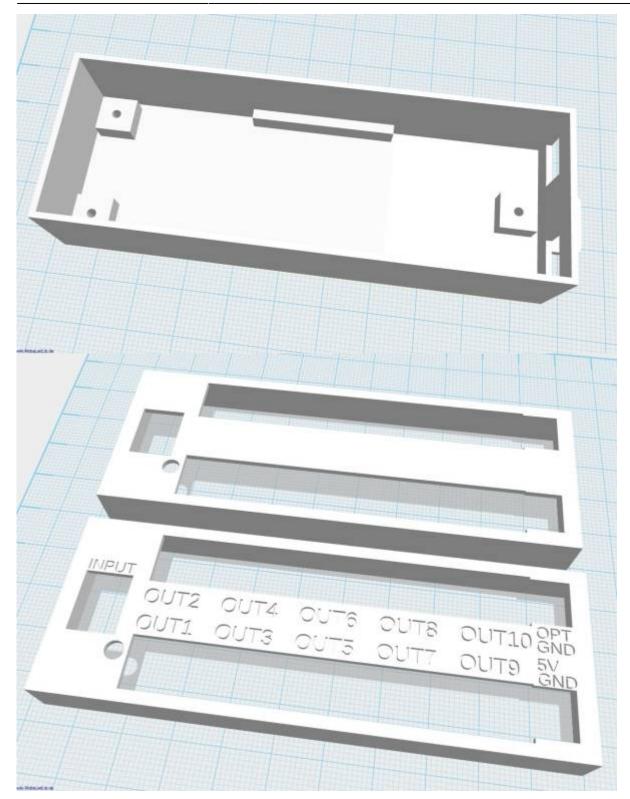
- Es gibt ein Gehäuse mit Boden zur Nutzung auf dem Schreibtisch Hauptplatine V1.0-1.7
- Es gibt ein Gehäuse ohne Boden zur Befestigung an einer Wand Hauptplatine V1.0-1.7
- Es gibt vier verschiedene Deckel für den ESP32 mit 30 Pins: Für handelsüblichen, runden 4mm Lichtwellenleiter für Hauptplatine V1.0 oder für Hauptplatine V1.7 und für selbstgedruckte Lichtleiter für Hauptplatine V1.0 oder für Hauptplatine V1.7
- Es gibt drei verschiedene Deckel für den ESP32 mit 38 Pins: Für handelsüblichen, runden 4mm Lichtwellenleiter für Hauptplatine V1.0 oder für Hauptplatine V1.7 und für selbstgedruckte Lichtleiter für Hauptplatine V1.7


Alle Varianten mit ESP-Adapterplatine sind hier zu finden: Github Link

Alle Gehäuse werden unter Ausschluss jeglicher Gewähr in Bezug auf die Passgenauigkeit veröffentlicht. Dafür sind die verschiedenen ESP32-Varianten einfach zu vielfältig. Wenn mal ein Deckel mit 100%-ig zu den LEDs passt, reicht eine kurze PN im Stummiforum an mich.

Miniverteiler

Für den Miniverteiler wurde auch wieder ein kleines Gehäuse erstellt um Ihn im rauen Testalltag zu schützen.


Die Druckdaten sind hier auf Github zu finden. Direkter Download Link

Gehäuse für die Platine 200-Verteilerplatine

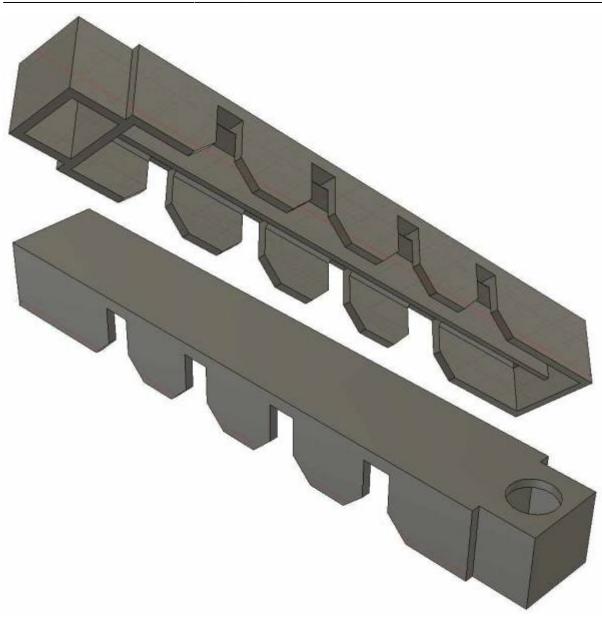
Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★

Für die Verteilerplatine wurde von Dominik wieder ein passendes Gehäuse inkl. Deckel entwickelt, welches es erlaubt den Verteiler dekorativ unter der Modelleisenbahn zu platzieren. Den dazugehörigen Deckel gibt es in aktuell vier Varianten. Entweder mit ohne ohne Aufdruck, sowie mit oder ohne Zusatzstützen für den Deckel, damit dieser auch rabiate Aussteckvorgänge überlebt.

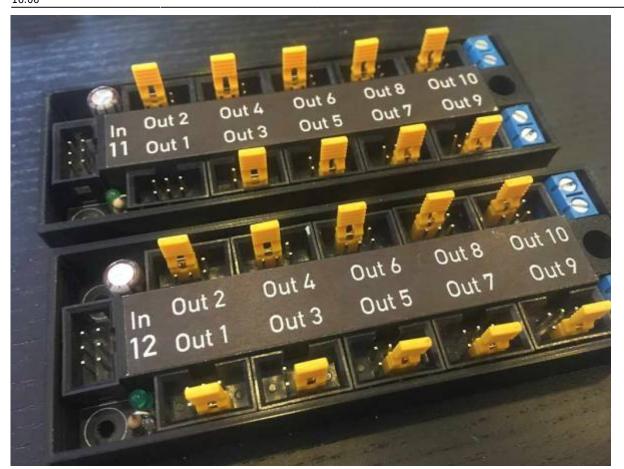
Die 3D-Daten sind wie immer hier auf Github zu finden. Direkter Downloadlink

Eine weitere Variante für die Platine 200-Verteilerplatine (für die Jumper-Schwaben unter uns)

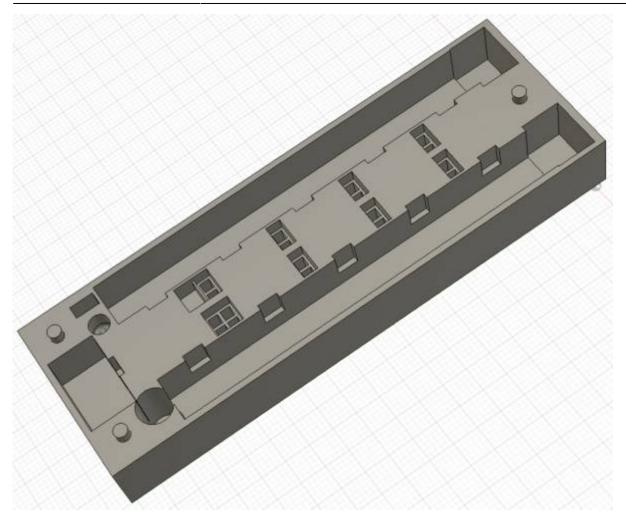
Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★


Wer nicht jedes Mal alle Steckverbindungen lösen möchte, um einen Jumper im Inneren umzusetzen

findet evtl. Gefallen an dieser Variante. Hier wird der Deckel zwischen die Wannenstecker geklemmt und kann jederzeit entfernt werden, um an die darunterliegenden Jumper zu kommen. Die Pfostenbuchsen bleiben bei diesem Vorgang stecken. Die Konstruktion ist insgesamt etwas flacher und steht nicht über die Anschlussklemmen hinaus. Das hat zur Folge, dass Kondensator, Kontroll-LED und Widerstand hier sichtbar bleiben.

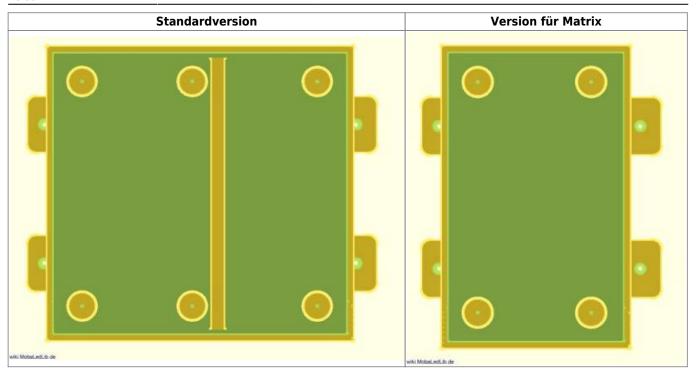

Ich drucke mir dazu entsprechende Aufklebe-Etiketten, um auch mit wenig Licht unter der Anlage die Steckplatznummer erkennen zu können. Ein PDF mit einigen Aufklebern ist in der ZIP-Datei enthalten.

Die Daten sind auf Github zu finden. Die STL-Datei ist optimiert für den FDM-Druck mit 0,4er Düse. Direkter Downloadlink



Last update: 2023/02/12 16:06

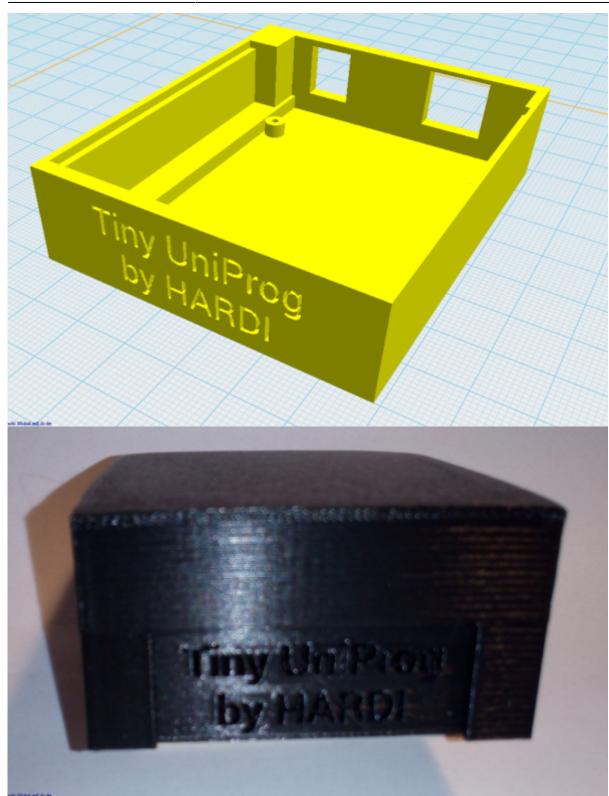
Neu ist die passende "Löt-Lehre" zum einfacheren Bestücken. Auch diese 3D-Daten sind hier auf Github zu finden.


Gehäuse für die Platine 300-PushButton

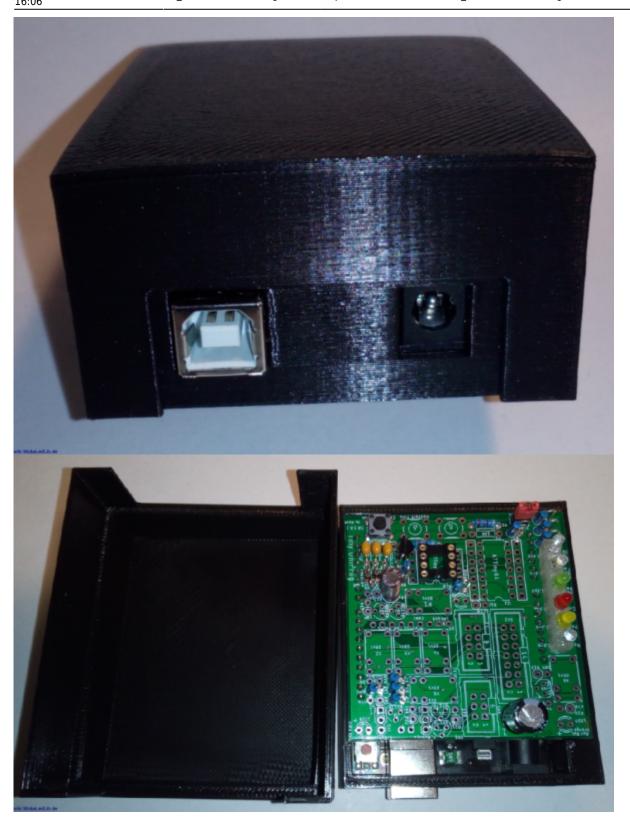
Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★

Für die Push-Button-Platine wurden zwei Gehäuse erarbeitet. Einmal ein breites für die normale Verwendung inkl der 10 Taster-Anschlüsse und das zweite in einer schmaleren Version für die Verwendung der Platine bei der Matrixschaltung in einem Weichenstellpult. Die Standardversion hat zudem einen Steg neben den zehn Tasteranschlüssen, um die Belastung der Platine beim ein- und aus-stecken zu reduzieren.

Die 3D-Daten sind wie gewohnt hier auf Github zu finden. Direkter Downloadlink

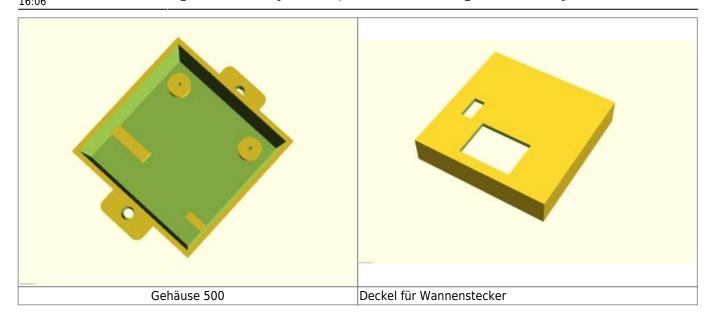

Gehäuse für die Platine 400-Attiny-Programmer

Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★


Für die Platine des Attiny-Programmer wurde ein Gehäuse inkl. Deckel entwickelt, welches es erlaubt den Programmer nach getaner Arbeit einfach und sicher zu verstauen.

Der Arduino und der Programmer halten ohne Schrauben in dem Gehäuse und sind trotzdem wieder leicht zu entfernen. Zudem kann der Arduino festgeschraubt werden, wenn es gewünscht ist. Dazu sind nur vier M2x4mm Schrauben notwendig.

Die 3D-Daten sind hier auf Github zu finden. Direkter Downloadlink


Gehäuse für die Platine 500 Soundmodul JQ-6500

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ****

Beschreibung und Bilder

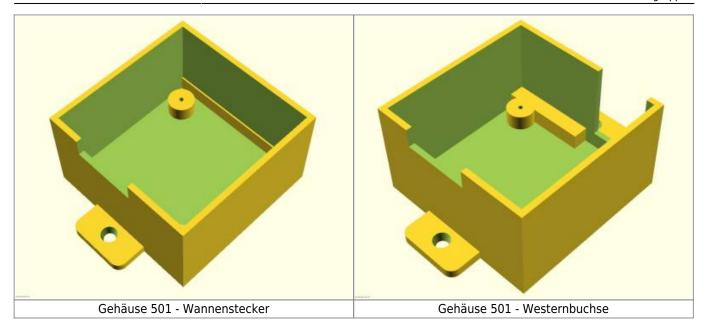
Auch für die Platine dieses Soundmoduls wurde ein Gehäuse erstellt.

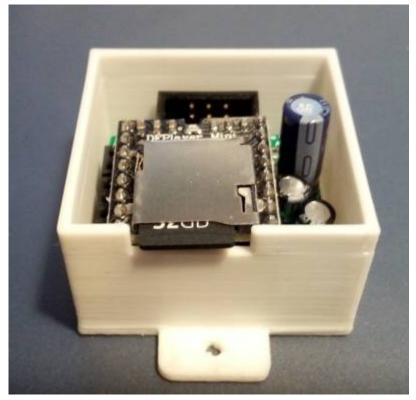
16:06

Download der Daten

Die Daten liegen wie gewohnt auf Github für Euch bereit.

- Gehäuse 501 für Wannenstecker
- Deckel für Gehäuse 500 mit Wannenstecker
- Beide 3D-Modelle herunterladen


Gehäuse für die Platine 501 Soundmodul MP3-TF-16P


Eignung für 3D-Drucker: FFF / FDM *** SLA / STL ***

Beschreibung und Bilder

Für die Platine des Soundmodul "MP3-TF-16P" wurden zwei Gehäuse erstellt.

Das erste Gehäuse ist für die Verwendung mit dem 4/6-poligen Wannensteckern, das zweite Gehäuse ist für die Verwendung mit einer 4-poligen Westernbuchse. Auf der gegenüberliegende Seite ist eine Aussparung für die microSD-Karte, damit diese auch im eingebauten Zustand entnommen und neu beschrieben werden kann.

Download der Daten

Die Daten liegen wie gewohnt auf Github für Euch bereit.

- Gehäuse 501 für Wannenstecker
- Gehäuse 501 für Westernbuchse
- Beide Gehäuse herunterladen

Halter für 503DE - WS2811 Multi-Use

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ***

Solange die Multi-Use Platine noch am Stück ist, kann sie mit Schrauben oder mit Kleber bzw. Klebestreifen befestigt werden. Dabei wird die fertige Platine einfach in den Halter geclipst. Es stehen zwei Druckdateien sowie die Fusion 360 Ausgangsdatei im Github zur Verfügung.

Die Version zum Schrauben hat zwei Aussparungen in der Fläche und spart ca. 10 % Material und Zeit.

Soll das Ganze mit einem Klebestreifen befestigt werden, benötigt man die ganze Auflagefläche.

Download der Daten

Druckdateien im Github

Gehäuse für die Platinen 510-Servo-Stepper-Charlieplexing und 520-WS2811-Extender

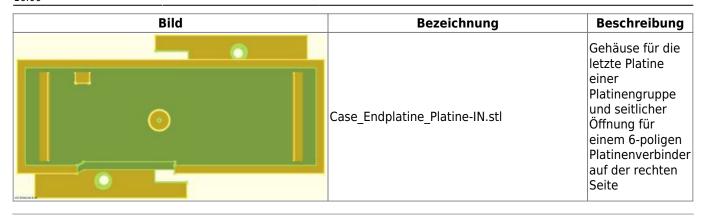
Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★

Beschreibung

Für die Platinen der Serien 510 und 520 wurden Gehäuse und Deckel entwickelt, welche in verschiedenen Variationen, je nach Einsatzzweck gedruckt werden können.

Der größte Unterschied besteht bei den Gehäuse darin, wofür man die Platine einsetzen möchte, als Einzelplatine oder in einem Platinenverbund mit zwei oder mehr Platinen. Für die Verbindung zwischen den Gehäusen wurden Füße mit Aussparungen angelegt, welche es ermöglichen die Gehäuse fein säuberlich aneinanderzureihen. Auf Grund der unterschiedlichen Drucktechniken kann es sein, das die Halterungen mit einer kleinen Feile oder einem Präzisionsmesser nachbearbeitet werden müssen.

Bezugsquelle


Die gesamten 3D-Daten zum selber ausdrucken liegen wie immer auf Github für Euch bereit. MobaLedLib Docu/3D Daten fuer die MobaLedLib/Gehaeuse-510 520/

Gehäuse

Die Gehäuse passen für beide Platinen. Egal ob es sich um eine 510er oder 520er handelt.

Bild	Bezeichnung	Beschreibung
	Case_Einzelplatine_ohne-Oeffnungen.stl	Gehäuse für einzelne Platinen und seitliche Öffnungen
	Case_Einzelplatine_Power-IN.stl	Gehäuse für einzelne Platinen und seitlicher Öffnung für Schraubklemme auf der linken Seite
	Case_Startplatine_nur_Platine-OUT.stl	Gehäuse für die erste Platine einer Platinengruppe und seitlicher Öffnung für einen 6-poligen Platinenverbinder auf der rechten Seite
	Case_Startplatine_Power-IN_Platine-OUT.stl	Gehäuse für die erste Platine einer Platinengruppe und seitlicher Öffnung für eine Schraubklemme auf der linken und einem 6-poligen Platinenverbinder auf der rechten Seite
	Case_Mittelplatine_Platine-IN_Platine-OUT.stl	Gehäuse für die nächsten Platinen einer Platinengruppe und seitlicher Öffnung für einem 6-poligen Platinenverbinder auf der linken und rechten Seite

Last update: 2023/02/12 16:06

Deckel zu den Gehäusen

Servo, Stepper und Charlieplexing

Bild	Bezeichnung	Beschreibung
4 3	Cover-510_mit-Wannenstecker_Charlieplexing_mit-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Charlieplexing - Aufdruck für Pin-Belegung
	Cover-510_mit-Wannenstecker_Charlieplexing_ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Charlieplexing - ohne Pinbelegung
SIG	Cover-510_mit-Wannenstecker_Servo-mit-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Servo - Aufdruck für Pin-Belegung
	Cover-510_mit-Wannenstecker_Servo-ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Servo - ohne Pinbelegung
	Cover-510_mit-Wannenstecker_Stepper_ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Stepper - Aufdruck für Pin-Belegung

Printed on 2025/11/27 19:25 https://wiki.mobaledlib.de/

Bild	Bezeichnung	Beschreibung
3210 ++R	Cover-510_mit-Wannenstecker_Stepper-mit-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Stepper - ohne Pinbelegung
4- 60 	Cover-510_ohne-Wannenstecker_Charlieplexing_mit-Aufdruck.stl	Deckel mit Öffnungen für: - - Wannenstecker - Charlieplexing - Aufdruck für Pin-Belegung
	Cover-510_ohne-Wannenstecker_Charlieplexing_ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Wannenstecker - Charlieplexing - ohne Pinbelegung
SIG	Cover-510_ohne-Wannenstecker_Servo_mit-Aufdruck.stl	Deckel mit Öffnungen für: - Servo - Aufdruck für Pin-Belegung
	Cover-510_ohne-Wannenstecker_Servo_ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Servo - ohne Pinbelegung
3210 ++R-	Cover-510_ohne-Wannenstecker_Stepper_mit-Aufdruck.stl	Deckel mit Öffnungen für: - Stepper - Aufdruck für Pin-Belegung
	Cover-510_ohne-Wannenstecker_Stepper_ohne-Aufdruck.stl	Deckel mit Öffnungen für: - Stepper- ohne Pinbelegung

WS2811 Extender

Bild	Bezeichnung	Beschreibung
	Cover_520-mit-Wannenstecker_ohne-Beschriftung.stl	Deckel mit Öffnungen für: - Wannenstecker - Ausgänge - keine Beschriftungen, auch nicht an der Seite
VCC OUT1 VCC OUT2 VCC OUT3	Cover_520-mit-Wannenstecker_mit-Pin-Beschriftung.stl	Deckel mit Öffnungen für: - Wannenstecker - Ausgänge - Aufdruck für Pin-Belegung
	Cover_520-mit-Wannenstecker_ohne-Pin-Beschriftung.stl	Deckel mit Öffnungen für: - Wannenstecker - Ausgänge - ohne Pinbelegung
VCC OUT1 VCC OUT2 VCC OUT3	Cover_520-ohne-Wannenstecker_mit-Pin-Beschriftung.stl	Deckel mit Öffnungen für: - Ausgänge - Aufdruck für Pin-Belegung
	Cover_520-ohne-Wannenstecker_ohne-Pin-Beschriftung.stl	Deckel mit Öffnungen für: - Ausgänge - ohne Pinbelegung

521 - 24-LED-Connector

Auch für den 24-LED-Connector gibt es Gehäuse. Diese sind alle auf Github zu finden.

Gehäuse

Case_521-24LedConnector.stl
Case_521-24LedConnector_without_OptPower.stl

Deckel

Cover_521-24LedConnector_In_and_Out.stl Cover_521-24LedConnector_In_only.stl

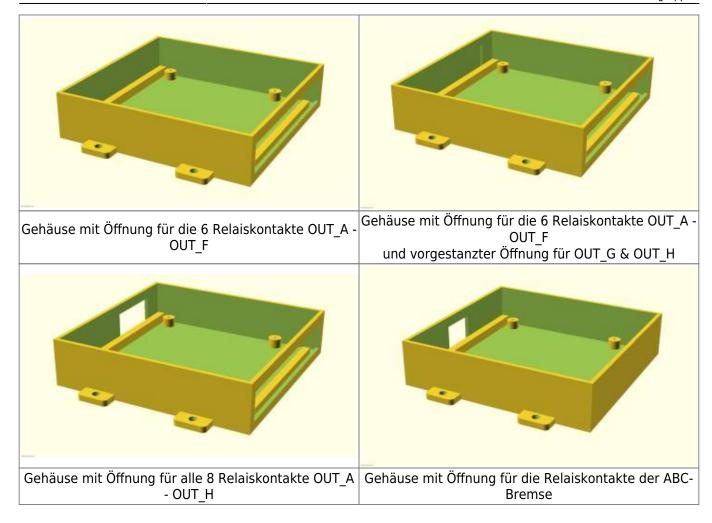
Sammelarchiv

Alle 4 Dateien als ZipFile

Lehre

Zur einfachen Montage der Bauteile (gerade in der Version mit Stiftleisten), kann die Löthilfe verwendet werden. Die Vorgehensweise wird in der Bauanleitung des LED Connectors beschrieben.

Last update: 2023/02/12


Die 3D-Daten sind hier auf Github zu finden.

Gehäuse für Platine 530

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ****

Beschreibung und Bilder

Das Gehäuse für die Relaisplatine gibt es in drei bzw vier verschiedenen Varianten. Da diese Platine ein sehr hohes Gewicht durch die Relais hat und auch durch die Schaltvorgänge Vibrationen entstehen, wurde dieses Gehäuse anstatt wie alle bisherigen mit einer Wandstärke von 1,25mm mit einer Wand- und Bodenstärke von 1,75mm erstellt. Zudem wurde der Abstand unterhalb der Platine erhöht um die notwendige Luftstrecke zwischen den Kontakten und den Gehäuseteilen zu erhalten.

Druckdaten

- Gehäuse mit Öffnung für die 6 Relaiskontakte OUT A OUT F
- Gehäuse mit Öffnung für die 6 Relaiskontakte OUT_A OUT_F, sowie OUT_G & Out_H
- Gehäuse mit Öffnung für alle 8 Relaiskontakte OUT A OUT H
- Gehäuse mit Öffnung für die Relaiskontakte der ABC-Bremse
- Zip-Datei mit allen vier Gehäusen

Gehäuse für WS2811-PCB

Eignung für 3D-Drucker: FFF / FDM ★★★★ SLA / STL ★★★★

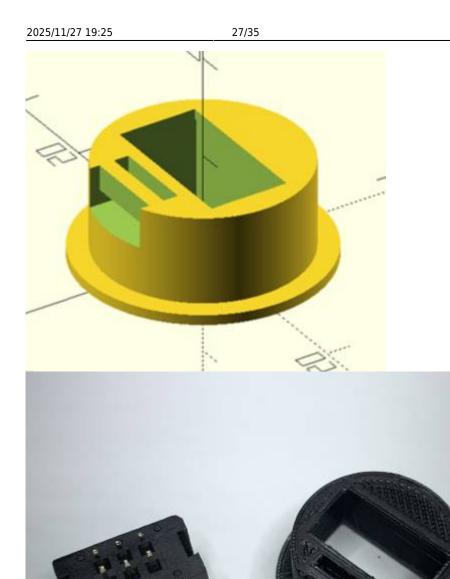
Benötigte Werkzeuge:

* 3D-Drucker

Bauteile beschaffen:

Die Druckvorlagen im stl-Format liegen unter https://github.com/LorenzSteinke/WS2811 Gehaeuse .

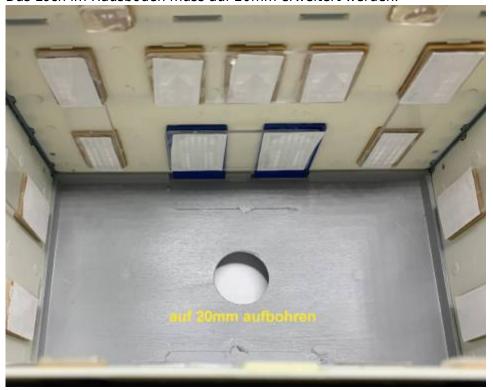
Das Gehäuse sieht aus wie auf dem Foto gezeigt und lässt sich mit zwei 2mm-Schrauben befestigen.



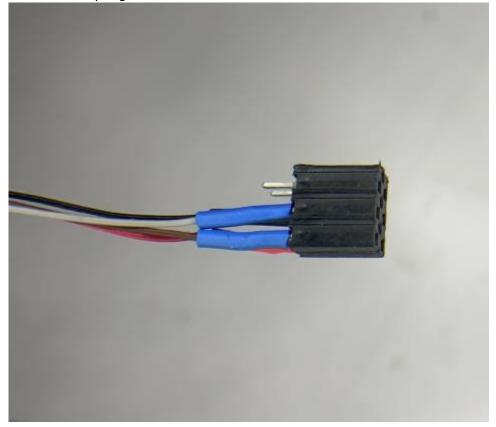
Adapter für Pfostenstecker (Hausanschluss)

Eignung für 3D-Drucker: FFF / FDM *** SLA / STL ***

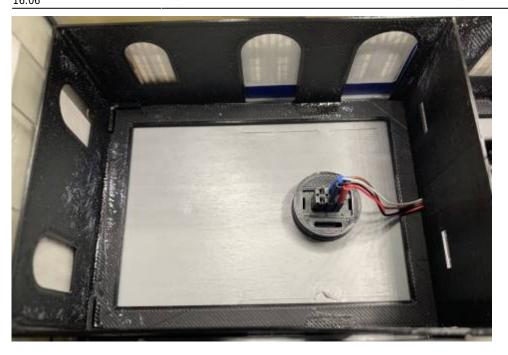
Beschreibung


Um ein Haus einfach auf der Modelleisenbahn einfach von seinem, Platz zu nehmen und auszutauschen wurde von Jueff aus dem Stummiforum ein Adapter (der **Hausanschlussstecker**) erstellt, welcher einen 6-poligen Pfostenstecker aufnimmt und die Kontakte auf der Innenseite des Hauses zur Verfügung stellt.

Last update: 2023/02/12 16:06

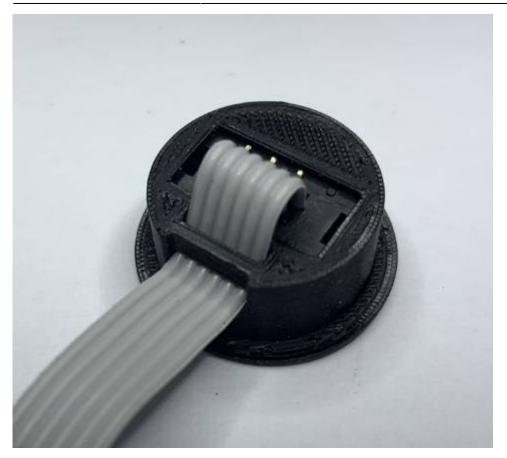

Das Loch im Hausboden muss auf 20mm erweitert werden.

Von unten den Steckeradpater einfach durchstecken. Wenn gewünscht kann der Adapter auch noch festgeklebt werden.



An eine 2×3 polige Printbuche mit RM 2,54mm wurden die Kabel für das Innenleben angelötet.

Das Innenleben wird von oben eingesetzt und die Printbuchse an den Stiften des Pfostensteckers angesteckt.

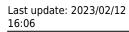

Last update: 2023/02/12 16:06

Nun kann das Haus per Flachbandkabel mit einem Verteiler verbunden werden.

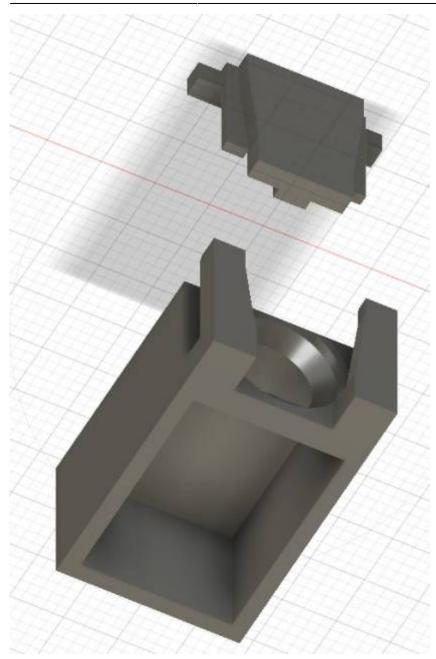
Alternativ kann an die Montagebuchse auch ein Kabel angelötet werden, hierfür ist eine Zugentlastung vorgesehen.

Druckdaten

Die 3D-Daten sind wie immer hier auf Github zu finden. Direkter Downloadlink


Lichtboxen für WS2812-Lichtplatinen

Eignung für 3D-Drucker: FFF / FDM *** SLA / STL ***


Um einzelne Fenster in einem Gebäude zu beleuchten, werden sogenannte Lichtboxen verwendet. Diese können mit dem 3D-Drucker ausgedruckt werden. Das funktioniert am besten mit einem Resin-Drucker, aber mit etwas Nachbearbeitung auch mit einem FDM-Drucker. Optional werden die Boxen anschließend noch mit schwarzem Sprühlack lackiert. Das erhöht die Lichtdichtigkeit noch einmal. Danach werden Papiermasken in die Lichtboxen eingesetzt, zum Beispiel das Bild eines bewohnten Zimmers. Die Maske wird hierfür rundum an den drei senkrechten Innenseiten der Lichtbox befestigt. Aber auch Papiermasken, die einfach als Halbbogen in die Box eingesetzt werden, ergeben später einen erstaunlichen 3D-Eindruck. Gardinen hingegen können flach vor die Lichtbox geklebt werden.

Jede Lichtbox wird mit einer einzelnen runden Platine WS2812 bestückt. Die Platinen werden hierfür wie bekannt in Reihe gelötet und per Flachkabel verbunden. Von der letzten Lichtbox geht eine einzelne Ader von Data Out zurück zur Haupt- oder Verteilerplatine.

Für verschiedene Fenstergrößen gibt es unterschiedliche Größen von Lichtboxen als Druckvorlagen unter https://github.com/LorenzSteinke/Lichtboxen.

Für alle Lichtboxen kann der selbe Deckel verwendet werden. Der Deckel kann optional mit einem Tropfen Heißkleber von hinten fixiert werden. Heißkleber klebt gut auf Resin und lässt sich trotzdem leicht wieder entfernen.

Last update: 2023/02/12 16:06

Die Lichtplatinen werden anschließend per Hauptplatine programmiert, beispielsweise als "Belebtes Haus". Das fertige Haus vermittelt den Eindruck, dass hinter den Fenstern echte Zimmer zu sehen sind. Es wirkt besonders realistisch, wenn die LED nur schwach leuchten.

From:

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

Permanent link:

https://wiki.mobaledlib.de/3d_druck/zubehoer/3dgehaeuse?rev=1676214364

Last update: 2023/02/12 16:06

