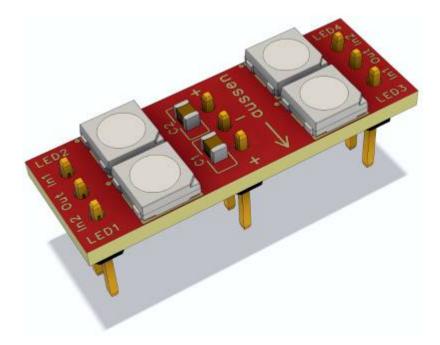
102DE LichtMaschine Pro (V 1.0.0) - vorbestückt

- ⇒ Anleitung nur SMD vorbestückten Version
- ⇒ Anleitung zur Beta 2
- ⇒ Anleitung zur Beta 1

Sämtliche Komponenten der MobaLedLib sind, sofern nichts anderes angegeben wurde, nur für 5V Versorgungsspannung ausgelegt. Dies betrifft vor allem den ESP, die WS2812, die WS2811 und sämtliche verwendete ICs.

Ziel der neuen LichtMaschine Pro lag während der Entwicklung hauptsächlich in der Erhöhung der Benutzerfreundlichkeit.

- Alle Anschlüsse auf die Außenseiten für einfachen und übersichtlichen Zugang
- klar definierte Auswahl der Teile zur Reduzierung der Fragen bei Anfängern
- Die Platine wird neben den Bauelemente-Sets und einem umfangreichen Profi-Starter-Set im


MLL-Shop angeboten

- Reduzierung der Gehäusevarianten
- Reduzierung der Fehlerquellen durch deutlich weniger selbst einzubauende Teile
- Verzicht auf Lösungen zweiter Wahl (CAN ohne galvanische Trennung und SX ohne Komparator)
- Deutliche Reduzierung der nötigen Jumper

Die LichtMaschine Pro wird fast komplett vorbestückt geliefert. Alle vier Protokolle (DCC, CAN, Selectrix und LNet) sind bereits vorhanden und können direkt verwendet werden. Es müssen nur noch 8 LEDs und 3 Taster eingelötet, sowie die Stiftleisten an die Heartbeats gelötet werden.

Was die LichtMaschine Pro zusätzlich mitbringt:

- Integrierter MLL-Ring als zentrales Lebenszeichen (Ergänzung zu Heartbeats mit nur ca. 120kb Speicherbedarf und nur 12 von 660 RGBs im Kanal 7)
- Heartbeat 0 und Heartbeat N an jedem Kanal!
- Eigenentwickeltes und austauschbares WS2812 Breakout. Austauschbar im Falle eines Kurzschlusses

- Ausfallende Heartbeats signalisieren gleichzeitig den Defekt der zugehörigen Sicherung
- SMD Vorbestückung für alle Protokolle
- Codierschalter zur Auswahl der Protokolle (DCC, CAN, Selectrix, LNet, DCC & CAN)
- nativer DMX512 Ausgang über 3,5mm Klinke
- kombinierte 5 und 12 Volt über dreipolige Klemmleiste
- reine 5 Volt über USB-C
- Spannungsregler (optional) mit 15W Leistung (5V*3A) zur Versorgung der acht LED Kanäle, jeweils mit 500mA einzeln abgesichert
- Bei Nutzung des Spannungsreglers oder dem kombinierten 5/12V-Anschluss, können alle acht LED Kanäle global über gemeinsam abgesicherte 1A mit 12 Volt an Pin 6 versorgt werden
- Kontroll-LEDs für die Eingangssignale DCC, SX und LNet
- integrierte Anschlüsse für beleuchtetes MobaLedLib-Logo und "1,3" OLED Display

Stromversorgung

Die LichtMaschine Pro bietet drei Möglichkeiten der Stromversorgung für unterschiedliche Szenarien.

- reine 12 Volt Spannungsversorgung über dreipolige Klemmleiste (ein Schaltregler ist für die Versorgung mit 5 Volt nötig, z. B. Gaptec LC78 05-3.0)
- kombinierte 5 und 12 Volt Spannungsversorgung über dreipolige Klemmleiste, RM3,5mm (Low 5v, GND, High 12V), es ist kein Schaltregler nötig
- reine 5 Volt Spannungsversorgung über USB-C, Pin 6 im Wannenstecker (12V) ist ohne Funktion

Die LichtMaschine Pro lässt sich auch weiterhin ganz ohne zusätzliche Spannungsversorgung betreiben.

Solange der ESP32 über seine USB Buchse mit einem PC verbunden ist, kann die Spannungsversorgung nach wie vor an den Verteilern erfolgen.

Bei größeren Anlagen sollte man hier aber Vorsicht walten lassen. Die USB Schnittstelle von PCs und Notebooks kann hier schnell überlastet werden.

Löt- und Trennjumper

Die Platine verfügt über zehn Löt- und drei Trennjumper. Sieben davon kommen nur zum Einsatz, wenn man den 7pol. DIP Switch nicht bestückt, um sein verwendetes Protokoll zu kodieren. Die übrigen Löt- und Trennjumper werden als Option vorgehalten, um in Zukunft einen ESP32-S3 mit vollem Funktionsumfang nutzen zu können.

Stückliste

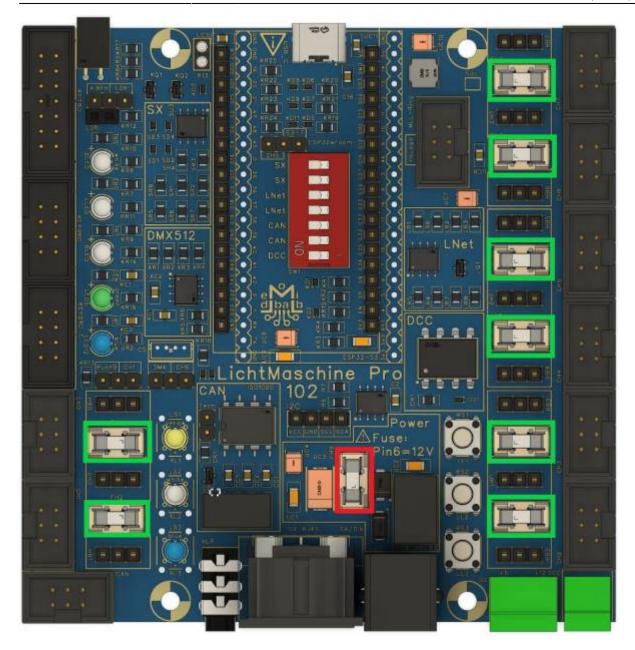
Anzahl	Bezeichnung	Bezeichnung	Bemerkungen
5		Kurzschlussbrücke, blau, RM 2,54, vergoldet	
5		Kurzschlussbrücke, schwarz, RM 2,54	
5		Kurzschlussbrücke, gelb, RM 2,54	
5		Kurzschlussbrücke, grün, RM 2,54	
5		Kurzschlussbrücke, rot, RM 2,54	
1		Photowiderstand	
8	FH1 - FH8	Feinsicherung 500mA	
1	FH9	Feinsicherung 1000mA	Nur verwenden, wenn 12V an Pin 6 erwünscht.
3	LS1/RS1, LS2/RS2, LS3/TS3	Kurzhubtaster 6x6mm, Höhe: 25mm, 12V, vertikal	
1	LL1/LR1	LED 3 mm diffus gelb 588 nm 130 mcd	
4	LL2/LR2, DLED, LLED, BLED	LED 3 mm diffus weiß 700 mcd	
2	LED12, LL3/LR3	LED 3 mm diffus blau 465 nm 2800 mcd	
1	LED5	LED 3 mm diffus grün 570 nm 38 mcd	
8		LED Abstandshalter	
4		BreakOut WS2812B (4fach)	
1	U1	ESP32 Yellow 38P	

Optional Display

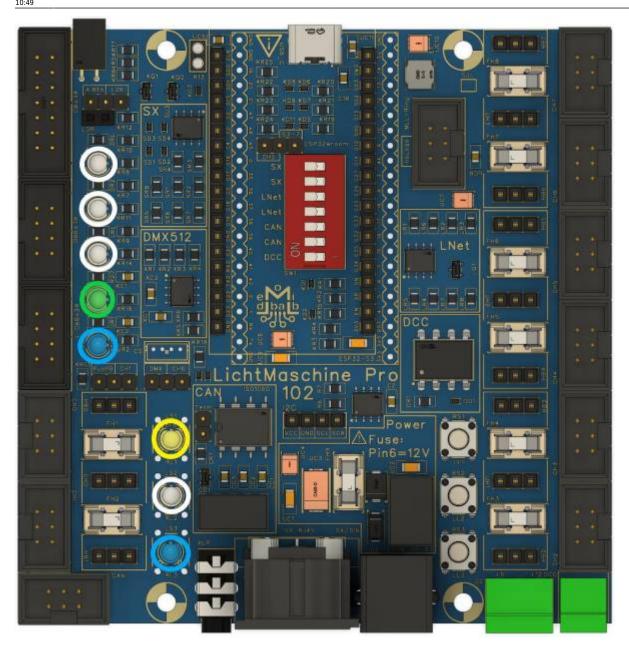
Anzahl	Bezeichnung
1	OLED-Display 128×64 (1,3")
1	Stiftleiste, 4-polig, 21mm

Optional Spannungswandler 12 Volt / 5 Volt

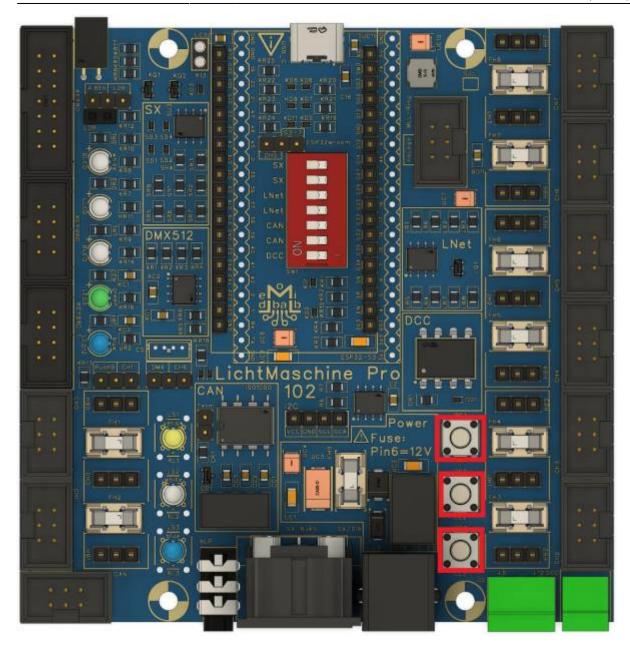
Anzahl	Bezeichnung	Bezeichnung
1	LC78_05-3.0	Spannungswandler LC78_05-3.0


Bestückung

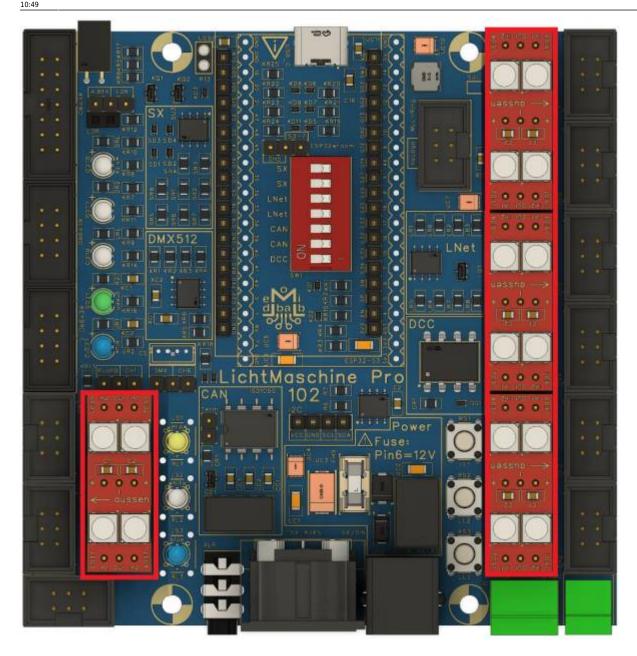
AAA Bitte, wenn möglich, bleifreies Lötzinn benutzen!! AAA\\


Als erstes können die 8 Sicherungen **500 mA** für die LED-Kanäle eingesetzt werden. Achtung beim Auspacken, die Teile können leicht fortspritzen.

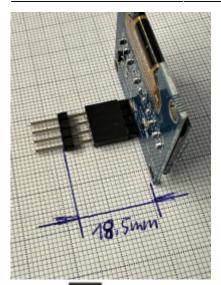
Wichtig ist auch, dass die 1 Ampere-Sicherung an der richtigen Stelle eingesetzt wird.

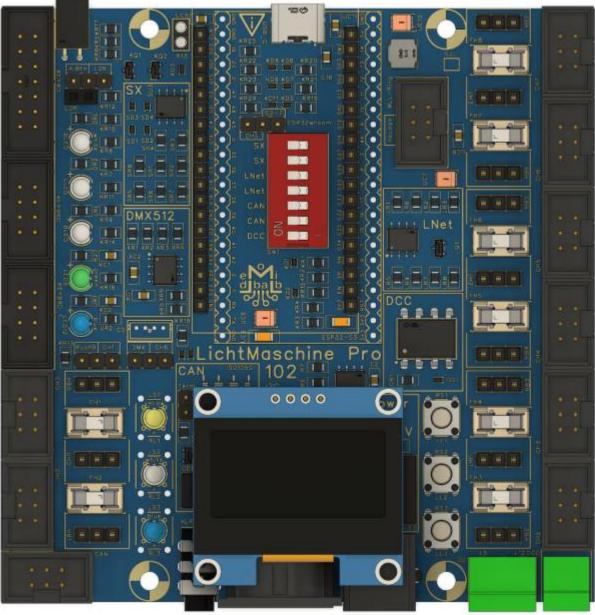

 $\triangle \triangle \triangle$ Sie darf aber nur eingesetzt werden, wenn an Pin 6 der Wannenstecker 12 V vorhanden sein soll! $\triangle \triangle \triangle$

Jetzt kommen die LED's dran, die auf die mitgelieferten Abstandshalter gesteckt eingelötet werden. Zu beachten ist der Pluspol der LED, erkennbar durch den längeren Anschluss. Die 3 LED's (gelb, weiß und blau) können links oder rechts vom Display eingelötet werden, die Taster kommen dann auf die andere Seite. Somit kann das für Links- oder Rechtshänder realisiert werden.

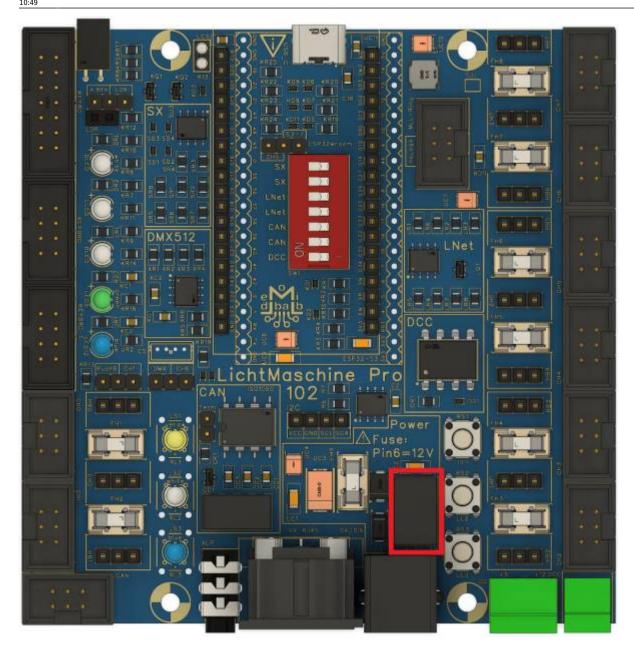


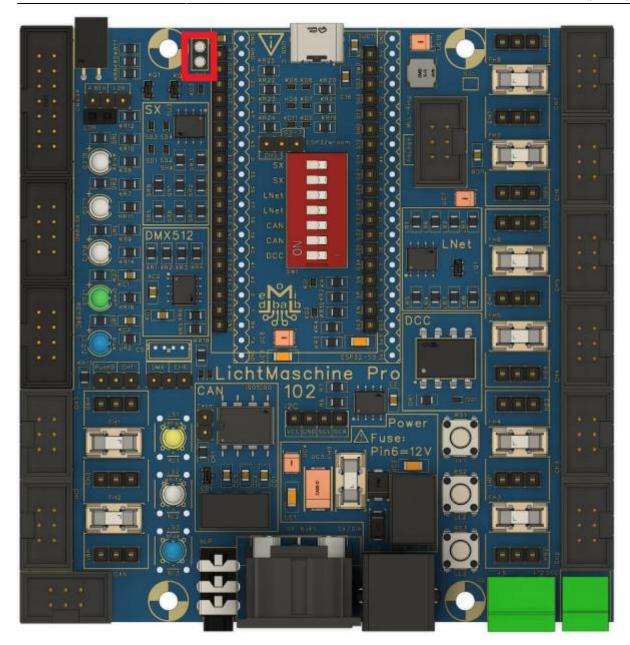
Dann kommen noch die **Taster** dran.


Danach werden die 12 **Stiftleisten 3-polig** in die Breakout-Module eingelötet.

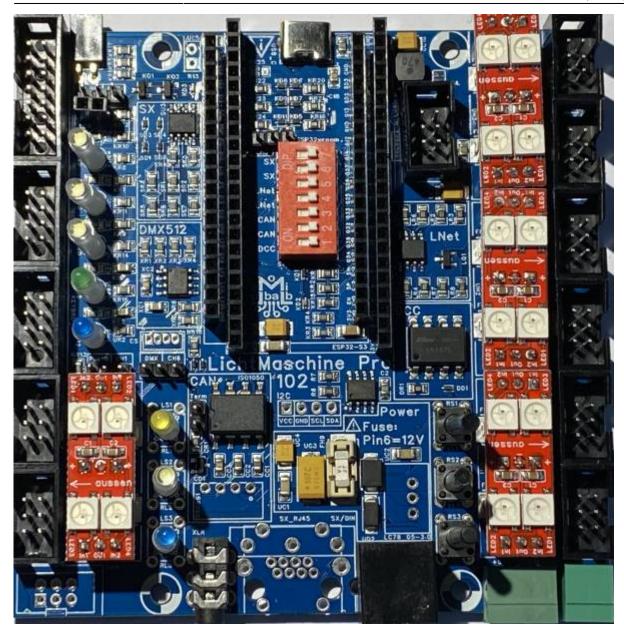

Dazu werden drei Stiftleisten 3-polig in die dazugehörigenBuchsenleisten eingesteckt und das Breakout-Modul aufgelegt. So kann das Ganze problemlos verlötet werden. Das Breakout nach dem Einlöten wieder entfernen.

Optional Display

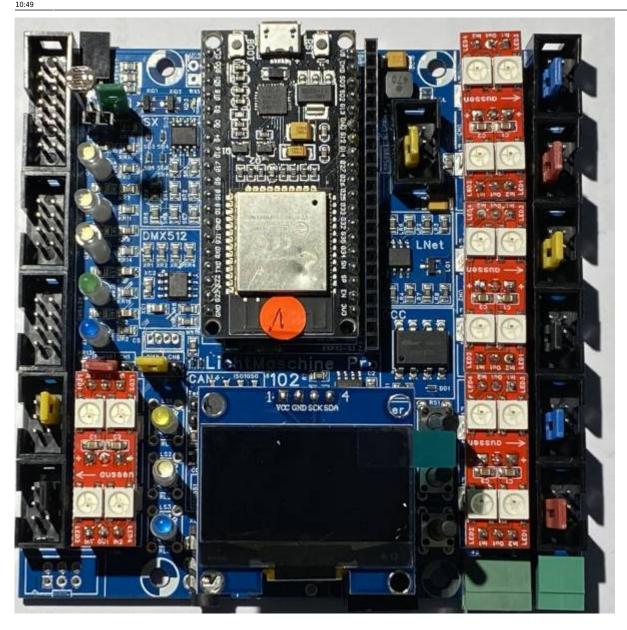

Hier liefert uns der Shop eine Stiftleiste mit ca. 21 mm Beinlänge. So kann das Display so eingebaut werden, dass es auf der Selektix-DIN-Buchse aufliegt. Der Abstand von Hauptplatine-Oberseite und Display-Unterseite sollte 18,5 mm betragen. Dann müsste es auch in das Gehäuse passen.


Optional Spannungsregler 12Volt / 5 Volt

Soll die LichtMaschine Pro mit 12 Volt betrieben werden, so ist ein **Spannungsregler** notwendig.


Optional Vorwiderstand für LDR

Wird ein anderer Helligkeitssensor LDR verwendet, so muss ggf. ein anderer Vorwiderstand verwendet werden. Hierzu kann der R13 mit einer Präzisionsbuchse bestückt werden, in den der entsprechende Widerstand gesteckt wird.



Fertig bestückt (Protokoll noch nicht eingestellt)

Hier mit ESP32 und Display

Erklärung Jumper

Kanal-Jumper (Oberseite)

Einige der Ausgangskanäle (CH0-CH7) sind doppelt belegt. Nicht jeder benötigt alle acht LED-Kanäle zum Betrieb von jeweils 660 WS281X, nicht jeder benötigt das DMX512-Protokoll und nicht jeder benötigt einen Eingang für Push Buttons. Daher sind für die Kanäle CH1 und CH6 zwei Jumper vorhanden, die man für seine Zwecke konfigurieren kann. Benötigt man beispielsweise den Eingang für Push Buttons, so entfällt der Kanal CH1 zur Nutzung von WS281X, bei DMX entfällt der Kanal CH6. Auch den Arduino-Eingang, den im Regelfall der LDR zum automatisierten Schalten des Lichts bei Dunkelheit nutzt, kann anderweitig verwendet werden, z. B. für zusätzliche analoge Taster (A Btn/Analog Buttons).

Bezeichnung	Funktion 1	Funktion 2	Bemerkungen	Lötbare Alternative
Key80 / CH1	Signal auf Key80 Stecker (kein Heartbeat auf LED-Bus 1)	Signal auf CH1 /LED-Bus 1 (Heartbeat 1 funktioniert)		
DMX / CH6	Signal für DMX (kein Heartbeat auf LED-Bus 6)	Signal auf CH6 /LED-Bus 6 (Heartbeat 6 funktioniert)		
A_Btn / LDR	Signal auf Key80 Stecker für analoge Taster A_Btn	Helligkeitssensor LDR für Tag-/Nacht-Steuerung	Anstelle des Jumpers für den LDR kann auch ein passender R13 laut LDR Tabelle verwendet werden.	
noLogo	Bei Verwendung von Kanal 7 ohne MobaLedLib-Ring		Fehlender MLL-Ring kann hier überbrückt werden	SJ.noLogo
Term	Abschluss für CAN-Bus		Wird nur bei Verwendung über CAN-Steuerung benötigt!	
CH5 / SJ-7	Signal des CH5 /Kanals 5 auf Key80 Stecker	Nutzung eines zusätzlichen Kanals SJ-7 bei Verwendung des ESP32 S3	Nicht implementiert und somit aktuell überflüssig	

Erklärung DIL-Schalter

Derzeit darf nur ein Protokoll (können ggf. 2 Schalter sein) aktiv sein!

Bezeichnung	Funktion	Lötbare Alternative
DCC	DCC aktiv	SJ.DCC
CAN	CAN aktiv	SJ.CAN
CAN	CAN aktiv	SJ.CAN
LNet	LocoNet aktiv	SJ.LNet
LNet	LocoNet aktiv	SJ.LNet
Sx	Selectrix aktiv	SJ.SX
Sx	Selectrix aktiv	SJ.SX

Lötjumper bei Einsatz des ESP32 S3 (noch nicht verfügbar)

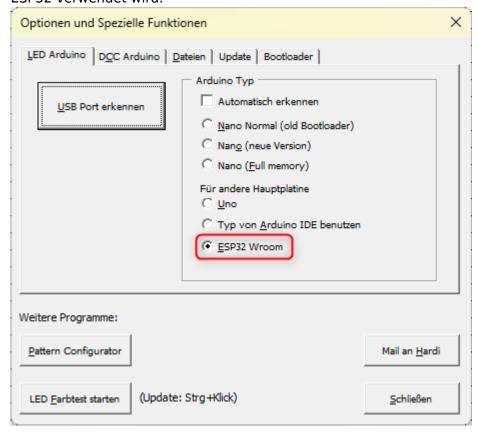
Bezeichnung	Funktion (Schalter auf On)	
SJ.S1, SJ.S2, SJ.S3	Für Einsatz ESP32 S3 (Zukunft)	

Erklärung LEDs

Name	Farbe	Funktion
DLED	Weiß	DCC Kontrol-LED
LLED	Weiß	LNet Kontrol-LED
BLED	Weiß	Status-LED des ESP32 (blinkt im Sekundenrhytmus)
LED5	Grün	Kontroll-LED 5 Volt

Name	Farbe	Funktion
LED12	Blau	Kontroll-LED 12 Volt
LL1/RL1	Gelb	LED-Bus 7, erster WS2811, grüner Kanal
LL2/RL2	Weiß	LED-Bus 7, erster WS2811, roter Kanal
LL3/RL3	Blau	LED-Bus 7, erster WS2811, blauer Kanal

Inbetriebnahme für den Programmgenerator


Um den Start in die ESP32-Welt so einfach wie möglich zu machen, gibt es eine fertige MLL pgf-Datei, die die Aktivierung aller Pins, aller 16 Heartbeats, des MobaLedLib-Rings, des Displays, der drei Taster und der dazugehörigen LEDs übernimmt. Einmal importiert, kann man seine alte Programmierung einfach zwischen die Heartbeat 7 und die Heartbeat 0N kopieren. In diesem Bereich befinden sich als Beispiel drei belebte Häuser. Diese bitte löschen und die eigene Programmierung aus dem anderen Zellenblatt hierher kopieren.

Die Datei kann hier herunter geladen werden.

Danach bitte die Datei entpacken und im Programmgenerator unter Optionen\Dateien\Laden aus Datei ins Programm laden.

Vor dem Übertragen zum Arduino muss im gleichen Menü noch händisch eingestellt werden, dass ein ESP32 verwendet wird:

Ergebnis:

Printed on 2025/11/09 18:25 https://wiki.mobaledlib.de/

Die drei LEDs neben dem Display leuchten ganz schwach und lassen sich mit den Tastern S1 bis S3 einschalten.

Der MLL-Ring dreht sich in RGB-Farben im Uhrzeigersinn.

Alle Heartbeats "Ausgang" blinken grün, alle Heartbeats "Eingang" blinken gelb. Die beiden Farben sind in Anlehnung an die Kabelfarben gewählt. Sollten hier die Farben vertauscht sein ist das nicht schlimm. Gegebenenfalls kann das Breakout gedreht werden

Hinweise zum Test-Script

Das Test-Script enthält folgendes:

Kanal 0: Ausgehende Heartbeat vorhanden, dann kommt ein belebtes Haus mit einer RGB-LED, dann die eingehende Heartbeat.

Kanal1: Hat keine Heartbeats, aber ein belebtes Haus mit einer RGB-LED. Wird auch für PushButtons verwendet.

Kanal 2 - 5: Ausgehende und eingehende Heartbeat vorhanden.

Kanal 6: Hat keine Heartbeats da für DMX (Lichtsteuerung) vorgesehen ist.

Kanal7: 3 Einzel-LED der Lichtmaschine, dann MLL-Ring, Ausgehende Heartbeat vorhanden,dann eingehende Heartbeat. Ist kein MLL-Ring vorhanden muss der Jumper bei noLogo rein.

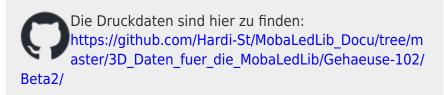
Die Häuser kann man im Excelblatt einfach herausnehmen, indem der Haken vorne in der ersten Spalte an den entsprechenden Zeilen entfernt wird und die Daten noch einmal übertragen werden.

Ansteuerung der zusätzlichen Kanäle

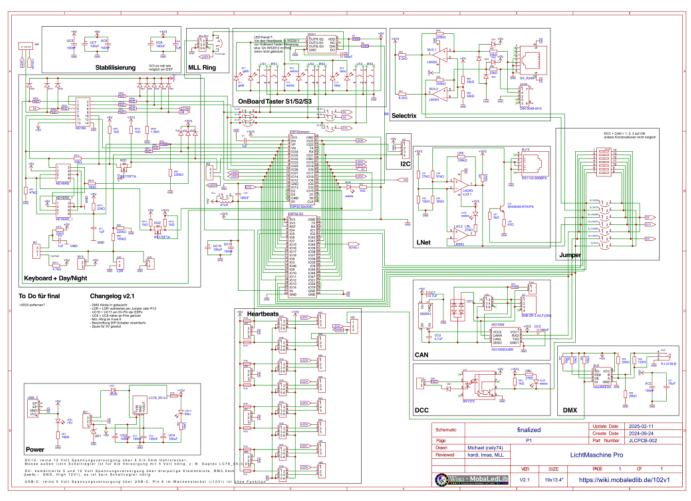
Hat man sich gegen die Inbetriebnahme über die oben verlinkte Datei entschieden, muss das Makro "Set_LED_OutpPinLst()" verwendet werden, damit man die zusätzlichen LED-Kanäle verwenden kann. Darüber lassen sich die Ausgabe-Pins festlegen.

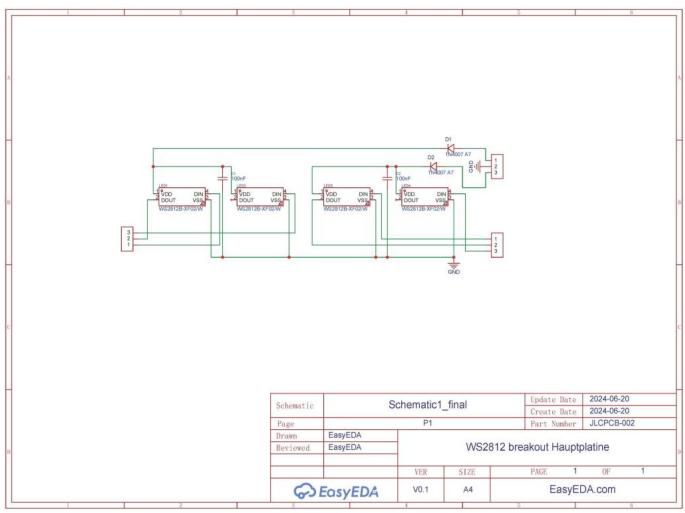
Der Befehl lautet:

Set LED OutpPinLst(27 32 16 14 18 19 23 0 17)


3D-Gehäuse - LichtMaschine Pro

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ****




Es sind noch Änderungen nötig. Diese sind bekannt, aber noch nicht umgesetzt. Verwendung auf eigenes Risiko.

Schaltplan

Printed on 2025/11/09 18:25 https://wiki.mobaledlib.de/

Last update: 2025/11/09 anleitungen:bauanleitungen:102_v100:102de_lichtmaschine-pro_v1-0-0_vorbestueckt https://wiki.mobaledlib.de/anleitungen/bauanleitungen/102_v100/102de_lichtmaschine-pro_v1-0-0_vorbestueckt 10:49

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

 $\label{lem:permanent link:https://wiki.mobaledlib.de/anleitungen/bauanleitungen/102_v100/102de_lichtmaschine-pro_v1-0-0_vorbestueckt. The permanent link:$

Last update: 2025/11/09 10:49

