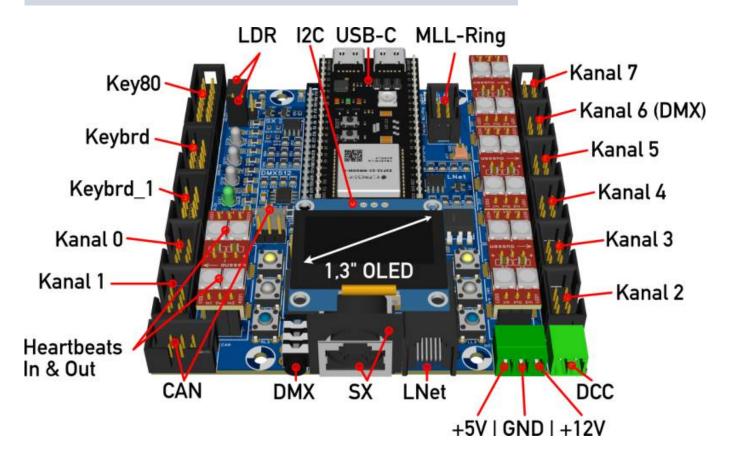
2025/11/17 19:18 1/25 102DE Hauptplatine (Beta 2)

102DE Hauptplatine (V 2.1.0)

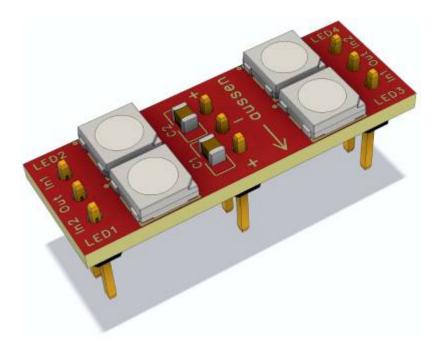
⇒ Anleitung zur Beta 1


Sämtliche Komponenten der MobaLedLib sind, sofern nichts anderes angegeben wurde, nur für 5V Versorgungsspannung ausgelegt. Dies betrifft vor allem den ESP, die WS2812, die WS2811 und sämtliche verwendete ICs.

...in Arbeit!

Zur Zeit werden die ersten fünfzig Platinen (Beta 2-Serie) von fleißigen Bastlern auf Herz und Nieren getestet

Ziel der neuen Hauptplatine ESP32 lag während der Entwicklung hauptsächlich in der Erhöhung der Benutzerfreundlichkeit.


- Alle Anschlüsse auf die Außenseiten für einfachen und übersichtlichen Zugang
- klar definierte Auswahl der Teile zur Reduzierung der Fragen bei Anfängern

- Die Platine wird neben den Bauelemente-Sets und einem umfangreichen Profi-Starter-Set im MLL-Shop angeboten
- Reduzierung der Gehäusevarianten
- Reduzierung der Fehlerquellen durch deutlich weniger selbst einzubauende Teile
- Verzicht auf Lösungen zweiter Wahl (CAN ohne galvanische Trennung und SX ohne Komparator)
- Deutliche Reduzierung der nötigen Jumper

Die Hauptplatine ESP32 wird komplett SMD vor bestückt geliefert. Alle vier Protokolle (DCC, CAN, Selectrix und LNet) sind bereits vorhanden und müssen durch nur wenige Bauteile ergänzt werden.

Was die neue Hauptplatine zusätzlich mitbringt:

- Heartbeat 0 und Heartbeat N an jedem Kanal!
- Eigenentwickeltes und austauschbares WS2812 Breakout. Austauschbar im Falle eines Kurzschlusses

- Ausfallende Heartbeats signalisieren gleichzeitig den Defekt der zugehörigen Sicherung
- SMD Vorbestückung für alle Protokolle
- Codierschalter zur Auswahl der Protokolle (DCC, CAN, Selectrix, LNet, DCC & CAN)
- nativer DMX512 Ausgang über 3,5mm Klinke
- kombinierte 5 und 12 Volt über dreipolige Klemmleiste
- reine 5 Volt über USB-C
- Spannungsregler (optional) mit 15W Leistung (5V*3A) zur Versorgung der acht LED Kanäle, jeweils mit 500mA einzeln abgesichert
- Bei Nutzung des Spannungsreglers oder dem kombinierten 5/12V-Anschluss, können alle acht LED Kanäle global über gemeinsam abgesicherte 1A mit 12 Volt an Pin 6 versorgt werden
- Kontroll-LEDs für die Eingangssignale DCC, SX und LNet
- integrierte Anschlüsse für beleuchtetes MobaLedLib-Logo und "1,3" OLED Display

Stromversorgung

Die Hauptplatine ESP32 bietet drei Möglichkeiten der Stromversorgung für unterschiedliche

2025/11/17 19:18 3/25 102DE Hauptplatine (Beta 2)

Szenarien.

- reine 12 Volt Spannungsversorgung über dreipolige Klemmleiste (ein Schaltregler ist für die Versorgung mit 5 Volt nötig, z. B. Gaptec LC78 05-3.0)
- kombinierte 5 und 12 Volt Spannungsversorgung über dreipolige Klemmleiste, RM3,5mm (Low 5v, - GND, High 12V), es ist kein Schaltregler nötig
- reine 5 Volt Spannungsversorgung über USB-C, Pin 6 im Wannenstecker (12V) ist ohne Funktion

Die Hauptplatine ESP32 lässt sich auch weiterhin ganz ohne zusätzliche Spannungsversorgung betreiben.

Solange der ESP32 über seine USB Buchse mit einem PC verbunden ist, kann die Spannungsversorgung nach wie vor an den Verteilern erfolgen.

Bei größeren Anlagen sollte man hier aber Vorsicht walten lassen. Die USB Schnittstelle von PCs und Notebooks kann hier schnell überlastet werden.

Löt- und Trennjumper

Die Platine verfügt über zehn Löt- und drei Trennjumper. Sieben davon kommen nur zum Einsatz, wenn man den 7pol. DIP Switch nicht bestückt, um sein verwendetes Protokoll zu kodieren. Die übrigen Löt- und Trennjumper werden als Option vorgehalten, um in Zukunft einen ESP32-S3 mit vollem Funktionsumfang nutzen zu können.

Stückliste

Anzahl	Bezeichnung	Bezeichnung
2	KEYBRD_0, KEYBRD1	Wannenstecker, 8-polig, gerade
1	KEY80	Wannenstecker, 14-polig, gerade
9	CH0, CH1, CH2, CH3, CH4, CH5, CH6, CH7, MLL-Ring	Wannenstecker, 6-polig, gerade
9		Pfostenbuchse, 6-polig, mit Zugentlastung
1	Term	Stiftleisten 2,54 mm, 1×02, gerade
3	A-Btn/LDR, Key80/CH1, DMX/CH6, CH5/S3-7	Stiftleisten 2,54 mm, 1×03, gerade
2	U1, U2	Buchsenleiste 19pol. gerade, RM 2,54, H: 8,5mm
2	U3, U4	Buchsenleiste 22pol. gerade, RM 2,54, H: 8,5mm
12	für Breakout	Buchsenleiste 3pol. gerade, RM 2,54, H: 8,5mm
1	I2C	Buchsenleiste 4pol. 1reihig 14mm
1	LDR	Buchsenleiste 2pol. 1reihig gewinkelt
5		Kurzschlussbrücke, blau, RM 2,54, vergoldet
5		Kurzschlussbrücke, schwarz, RM 2,54
5		Kurzschlussbrücke, gelb, RM 2,54
5		Kurzschlussbrücke, grün, RM 2,54
5		Kurzschlussbrücke, rot, RM 2,54
1		Photowiderstand
1	SW1	Dip Switch 7Pin blau (Protokollauswahl)
1	DCC	Steckbare Schraubklemme – 2-pol, RM 3,5 mm, 0° (DCC)

Anzahl	Bezeichnung	Bezeichnung
1		Stiftleiste – 2-pol, RM 3,5 mm, 90° (DCC)
1	12V / Gnd / 5V	Steckbare Schraubklemme – 3-pol, RM 3,5 mm, 0° (Spannungsversorgung)
1		Stiftleiste – 3-pol, RM 3,5 mm, 90° (Spannungsversorgung)
1	USB	KH-TYPE-C-2P (USB.C)
8	FH1 - FH8	Feinsicherung 500mA
1	FH9	Feinsicherung 1000mA
1	XLR	PJ-3136-B (DMX)
1	RJ12-Buchse	DS1133-S60BPX (LNet)
3	LS1/RS1, LS2/RS2, LS3/TS3	Kurzhubtaster 6x6mm, Höhe: 25mm, 12V, vertikal
1	LL1/LR1	LED 3 mm diffus gelb 588 nm 130 mcd
4	LL2/LL3, DLED, LLED, BLED	LED 3 mm diffus weiß 700 mcd
2	LED12, LL3/LR3	LED 3 mm diffus blau 465 nm 2800 mcd
1	LED5	LED 3 mm diffus grün 570 nm 38 mcd
8		LED Abstandshalter
4		BreakOut WS2812B (4fach)
1	U1	ESP32 Yellow 38P

Optional folgende Bauteile für CAN

Anzahl	Bezeichnung	Bezeichnung	
1	CS	JST B4B-ZR-3.4(LF)(SN) (MS2-Stecker)	
1	CAN	Wannenstecker, 6-polig, gerade	
1		Pfostenbuchse, 6-polig, mit Zugentlastung	
1	050551	B0505S-W5R3 (DC/DC-Wandler)	

Optional folgende Bauteile für SX

Anzahl	Bezeichnung	Bezeichnung
1	SX_RJ45	R-RJ45R08P-B000
1	SXDIN	DIN-504B-M10

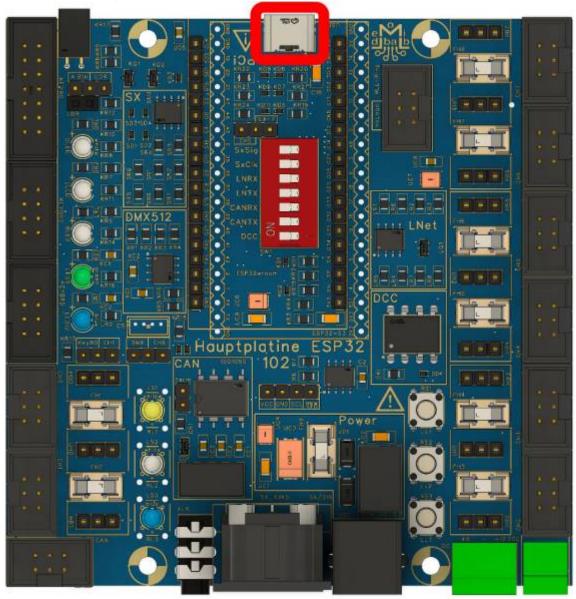
Optional folgende Bauteile für LNet

Anzahl	Bezeichnung	Bezeichnung
1	RJ13	DS1133-S60BPX (in allen Varianten enthalten) RJ12-Buchse

Optional Display

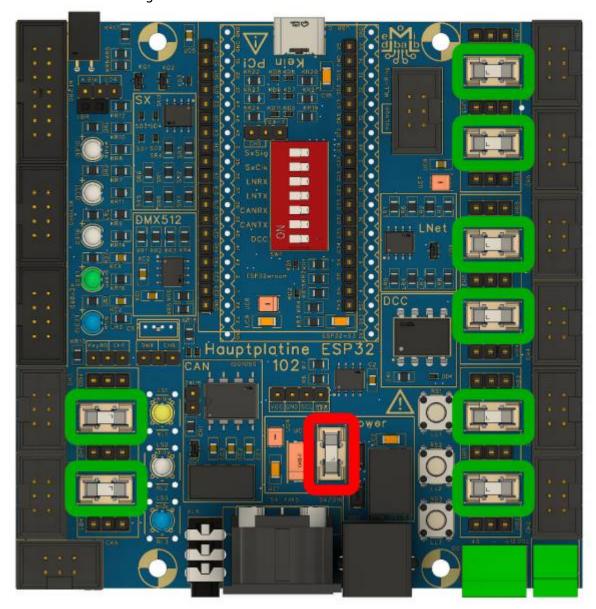
Anzahl	Bezeichnung	Bezeichnung
1		OLED-Display 128×64 (1,3")

Optional Spannungswandler 12 Volt / 5 Volt

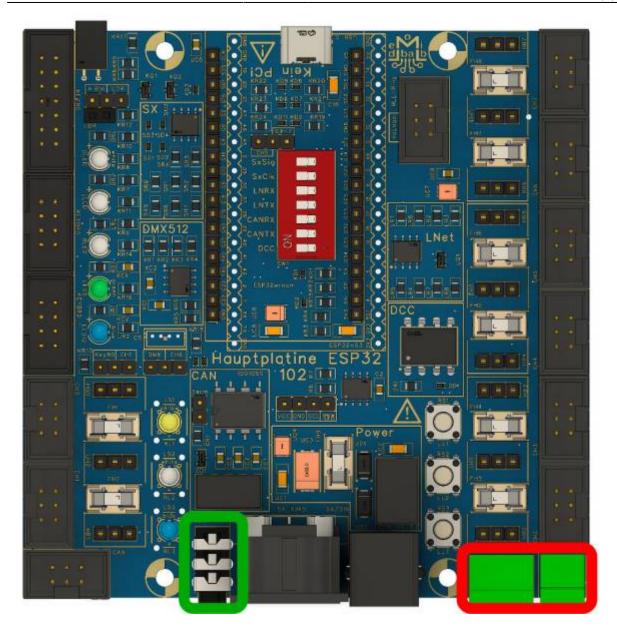

2025/11/17 19:18 5/25 102DE Hauptplatine (Beta 2)

Anzahl Bezeichnung		Bezeichnung
1	LC78_05-3.0	Spannungswandler LC78_05-3.0

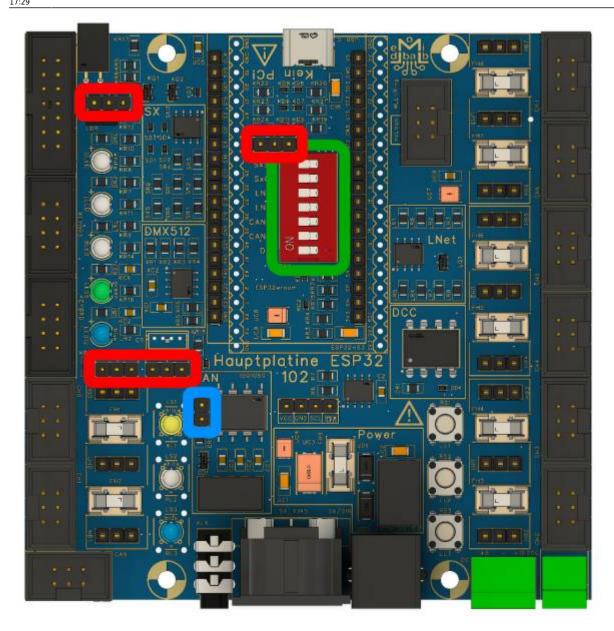
Bestückung


AAA Bitte, wenn möglich, bleifreies Lötzinn benutzen!! AAA
Beim Löten der Wannenstecker und der anderen Buchsen immer das Gegenstück einstecken, damit sich die heiß werdenden Kontakte nicht im Kunststoff bewegen..

Den Anfang macht die **USB-C-Buchse**, sie ist das niedrigste Teil. Es ist darauf zu achten, dass die Metalllaschen des Gehäuses gut verlötet werden und es keine kalte Lötstelle gibt. Sonst ist die mechanische Festigkeit der Buchse gefährdet.

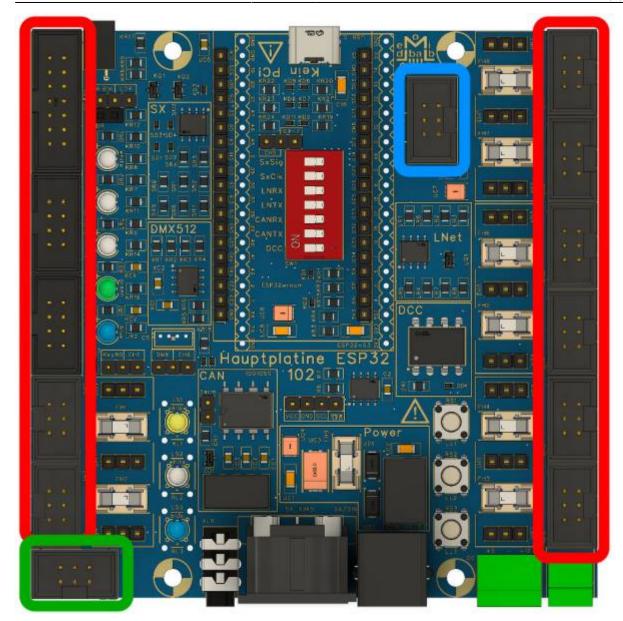

Es können auch die Sicherungen eingesetzt werden. Achtung beim Auspacken, die Teile können leicht fortspritzen. Wichtig ist auch, dass die **1 Ampere-Sicherung** an der richtigen Stelle eingesetzt wird.

Alle anderen Sicherungen haben 500 mA.

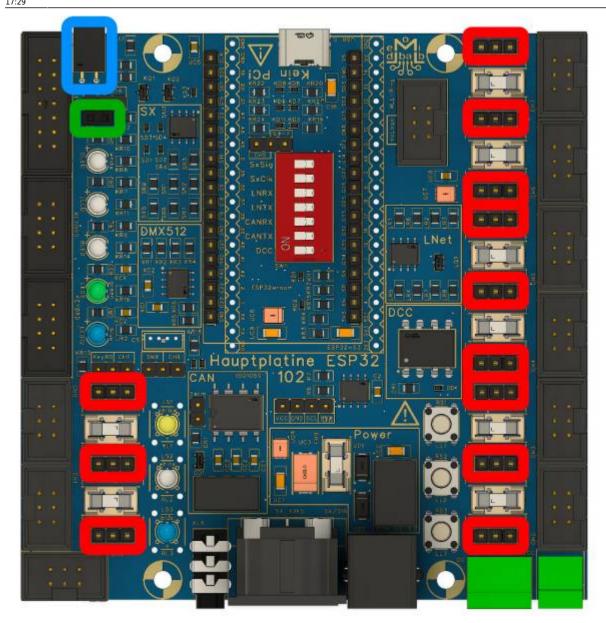


Weiter werden die **DMX-Buchse**, die **2-polige Stiftleise** für DCC und die **3-polige Stiftleiste** für die Stromversorgung bestückt.

2025/11/17 19:18 7/25 102DE Hauptplatine (Beta 2)

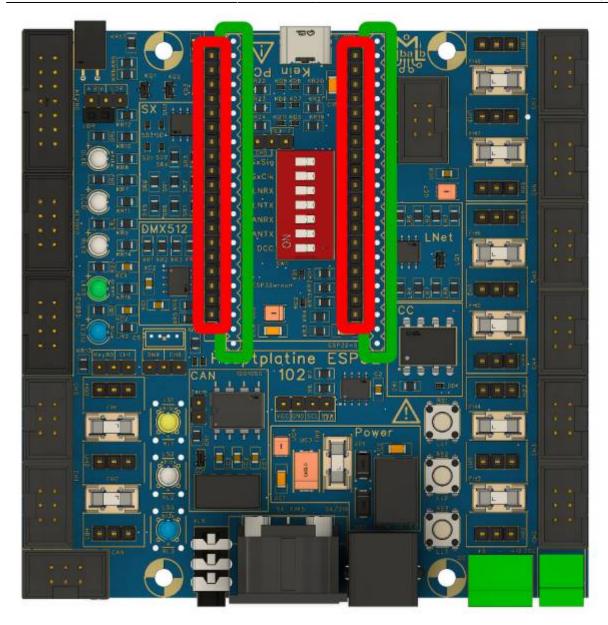


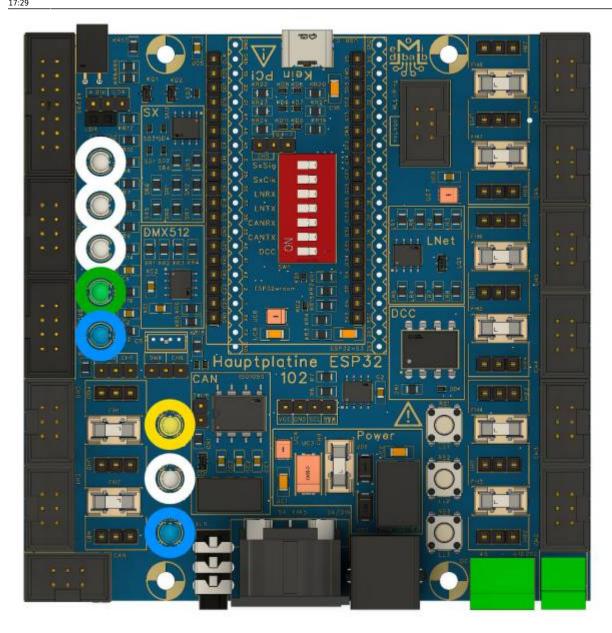
Gefolgt vom **DIL-Schalter** und den **2-** bzw. **3-poligen Stiftleisten**. Beim einlöten des DIL-Schalters alle auf "off" stellen



Danach werden die **Wannenstecker** eingelötet. Hier ist auf die richtige Ausrichtung zu achten. Die Buchse für den **MLL-Ring** kann ggf. unbestückt bleiben, wenn der MLL-Ring nicht verwendet wird. Genauso kann ggf. die Buchse für den **CAN-Bus** entfallen.

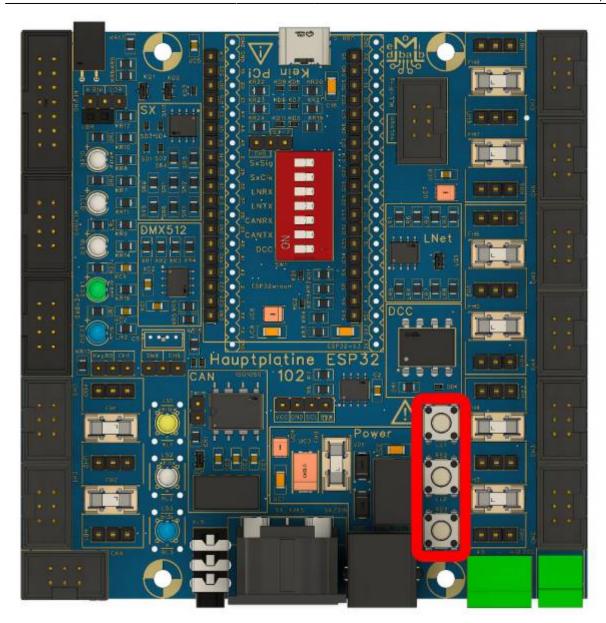
2025/11/17 19:18 9/25 102DE Hauptplatine (Beta 2)


Danach werden die 12 **Buchsenleisten 3-polig** für die Breakout-Module eingelötet.
Dazu werden drei Buchsenleisten 3-polig temporär auf ein Breakout-Modul aufgesteckt. So kann das Ganze problemlos verlötet werden. Das Breakout nach dem Einlöten wieder entfernen.
Ferner die zwei 2-poligen Buchsenleisten (**eine abgewinkelt (leider bei Auslieferung noch nicht in jedem Bauteilset enthalten)**, **eine gerade**) für den LDR.

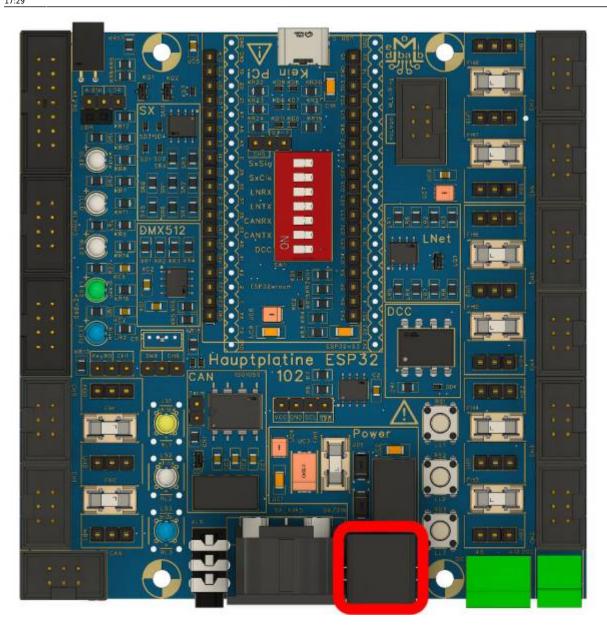

Dann werden die **19-poligen** und ggf. auch die **22-poligen Buchsenleisten** eingelötet. Die 22-poligen Buchsenleisten sind Vorarbeit für den ESP32 S3, der in Zukunft einmal verwendet werden könnte.

Am einfachsten gelingt das Einlöten, wenn auf den ESP die Buchsenleisten aufgesteckt werden und das Ganze dann in die Platine einesteckt wird. Dann sollten alle Pins verlötet werden. Danach kann der ESP wieder abgezogen werden.

2025/11/17 19:18 11/25 102DE Hauptplatine (Beta 2)

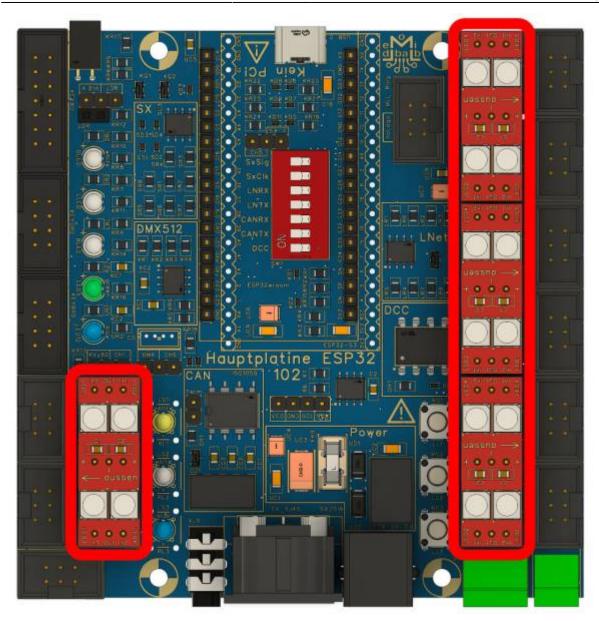


Jetzt kommen die LED's dran, die auf die mitgelieferten Abstandshalter gesteckt eingelötet werden. Zu beachten ist der Pluspol der LED, erkennbar durch den längeren Anschluss. Die LED's können links oder rechts vom Display eingelötet werden, die Taster kommen dann auf die andere Seite. Somit kann das für Links- oder Rechtshänder realisiert werden.



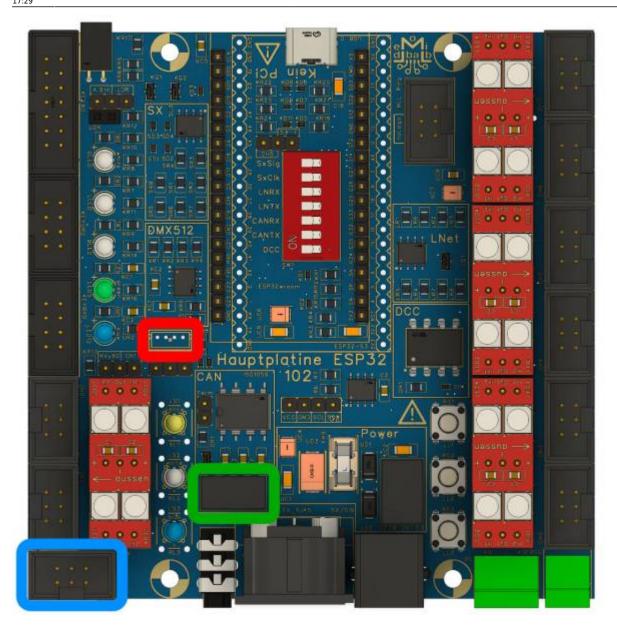
Dann kommen noch die **Taster** dran.

2025/11/17 19:18 13/25 102DE Hauptplatine (Beta 2)



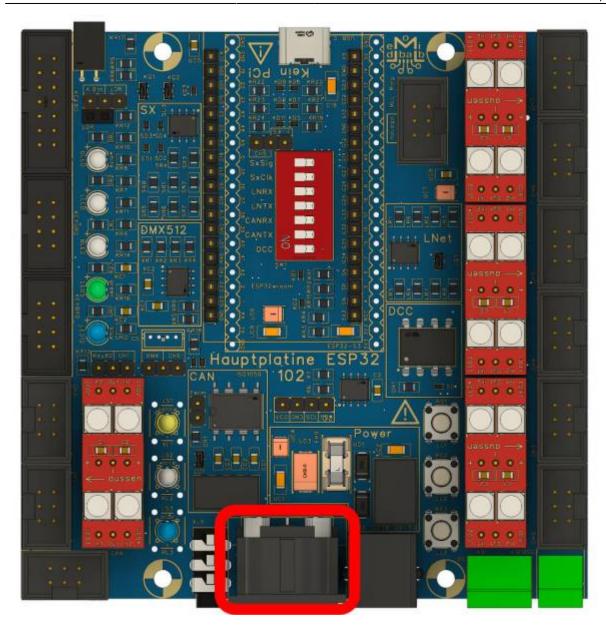
Als letztes wird noch die **LNet-Buchse** eingelötet.

Jetzt fehlen noch die **Breakout-Module**.

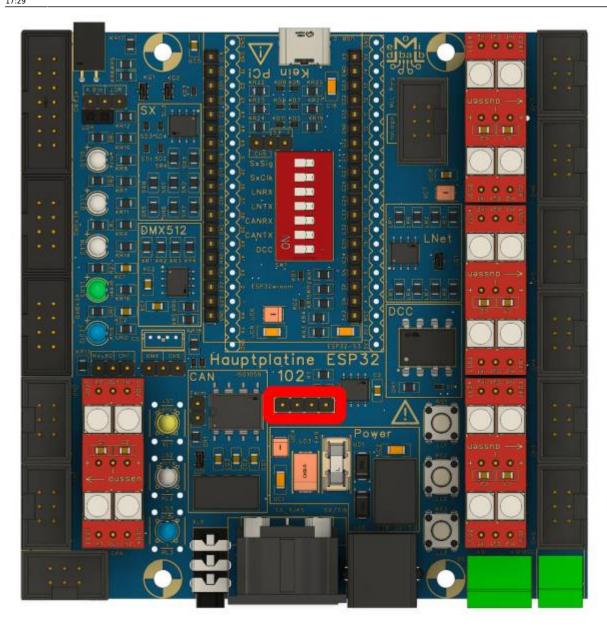

2025/11/17 19:18 15/25 102DE Hauptplatine (Beta 2)

Optional für CAN

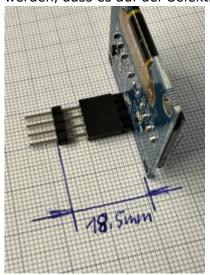
Es kann die **Buchse für das MS2-Kabel** eingelötet werden.


Genauso der Wannenstecker. Ferner muss der Spannungsregler eingelötet werden.

Optional für Selectrix (SX)

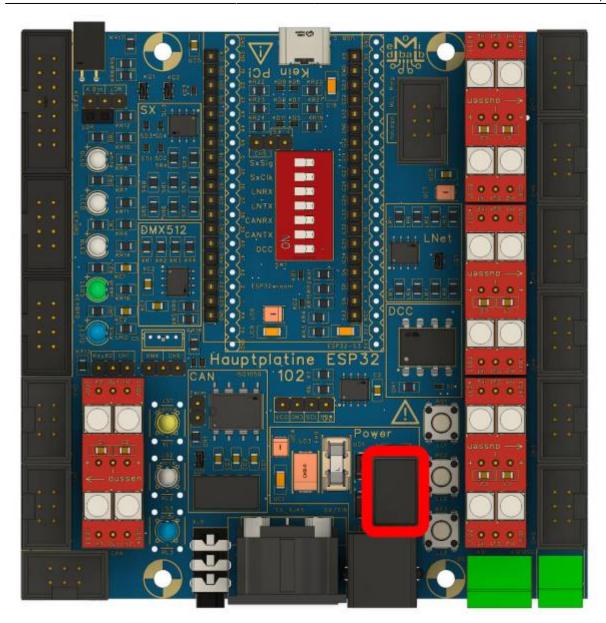

Hier wird entweder die **DIN-Buchse** oder die RJ45-Buchse eingelötet.

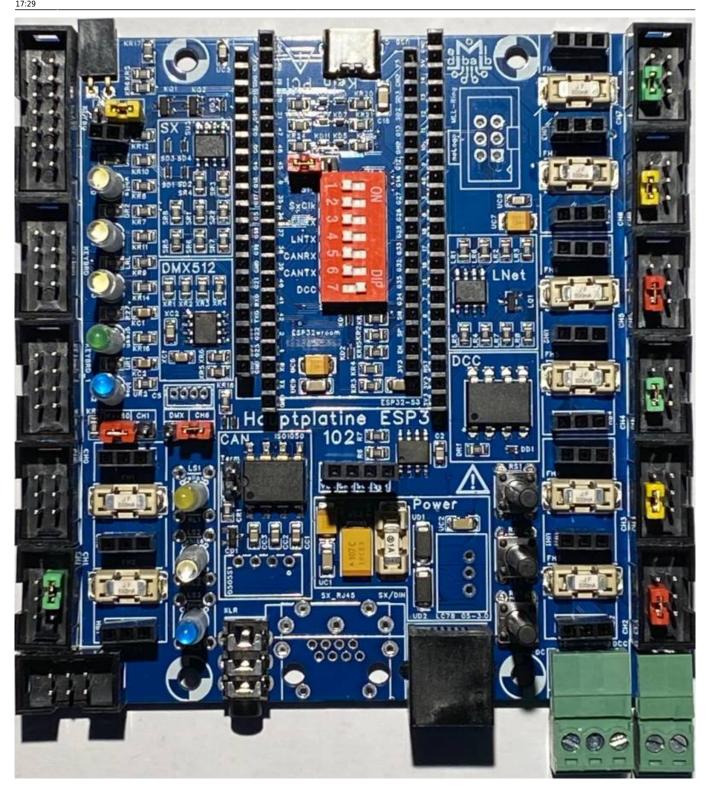
2025/11/17 19:18 17/25 102DE Hauptplatine (Beta 2)



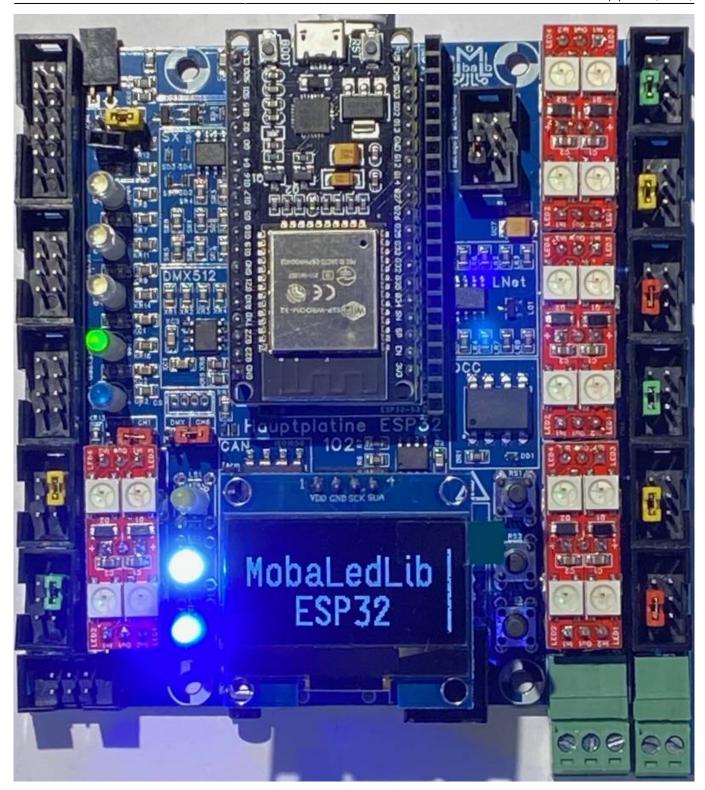
Optional Display

Für das Display muss eine **4-polige Buchsenleiste** eingelötet werden.


Hier liefert uns der Shop eine Buchse mit ca. 15 mm Beinlänge. So kann das Display so eingebaut werden, dass es auf der Selektix-DIN-Buchse aufliegt. Dann müsste es auch in das Gehäuse passen.


Optional Spannungsregler 12Volt / 5 Volt

Soll die Hauptplatine unter 12 Volt betrieben werden, so ist ein **Spannungsregler** notwendig.


2025/11/17 19:18 19/25 102DE Hauptplatine (Beta 2)

Fertig bestückt für das DCC Protokoll

2025/11/17 19:18 21/25 102DE Hauptplatine (Beta 2)

Erklärung Jumper

Kanal-Jumper (Oberseite)

Bezeichnung	Funktion 1	Funktion 2
key80 / CHI	Heartbeat auf LED-Bus 1)	Signal auf LED-Bus 1 (Heartbeat 1 funktioniert)
A_Btn / LDR	Signal auf Key80 Stecker für analoge Taster	Helligkeitssensor LDR für Tag-/Nacht-Steuerung

Bezeichnung	Funktion 1	Funktion 2
	Signal für DMX (kein Heartbeat auf LED-Bus 6)	Signal auf LED-Bus 6 (Heartbeat 6 funktioniert)
IL H > / >I- /		Nutzung eines zusätzlichen Kanals bei Verwendung des ESP32 S3
Term	Abschluss für CAN-Bus	

Lötjumper & Aufkratzjumper

Bezeichnung	Funktion
SJ.SxSig	Selectrix aktiv
SJ.SxClk	Selectrix aktiv
SJ.LNetRX	LocoNet aktiv
SJ.LNetTX	LocoNet aktiv
SJ.CANRX	CAN aktiv
SJ.CANTX	CAN aktiv
SJ.DCC	DCC aktiv
SJ.noLogo	Fehlender MLL-Ring kann hier überbrückt werden
SJ.S1, SJ.S2, SJ.S3	Für Einsatz ESP32 S3 (Zukunft)

Erklärung DIL-Schalter

Bezeichnung	Schalter	Funktion
SxSig	1	Selectrix aktiv
SxClk	2	Selectrix aktiv
LNetRX	3	LocoNet aktiv
LNetTX	4	LocoNet aktiv
CANRX	5	CAN aktiv
CANTX	6	CAN aktiv
DCC	7	DCC aktiv

Erklärung LEDs

Name	Farbe	Funktion
DLED	Weiß	DCC Kontrol-LED
LLED	Weiß	LNet Kontrol-LED
BLED	Weiß	Status-LED des ESP32 (blinkt im Sekundenrhytmus)
LED5	Grün	Kontroll-LED 5 Volt
LED12	Blau	Kontroll-LED 12 Volt
LL1/RL1	Gelb	LED-Bus 7, erster WS2811, grüner Kanal
LL2/RL2	Weiß	LED-Bus 7, erster WS2811, roter Kanal
LL3/RL3	Blau	LED-Bus 7, erster WS2811, blauer Kanal

Testprogramm für den Programmgenerator

Die Datei kann hier herunter geladen werden.

2025/11/17 19:18 23/25 102DE Hauptplatine (Beta 2)

Danach bitte die Datei entpacken und im Programmgenerator unter **Optionen\Dateien\Laden aus Datei** ins Programm laden.

Der Testaufbau ist ziemlich einfach:

Kanal 0 - Matrix 8×8

Kanal 1 - 7 PIN2 mit PIN4 Jumpern

Ring wenn vorhanden kann angesteckt werden, sonst PIN2 mit PIN4 Jumpern und entsprechende Zeile im Programmgenerator abwählen. Das Gleiche gilt für die Matrix.

Bitte auch die Tabelle Kanal-Jumper (Oberseite) beachten!!

Ergebnis:

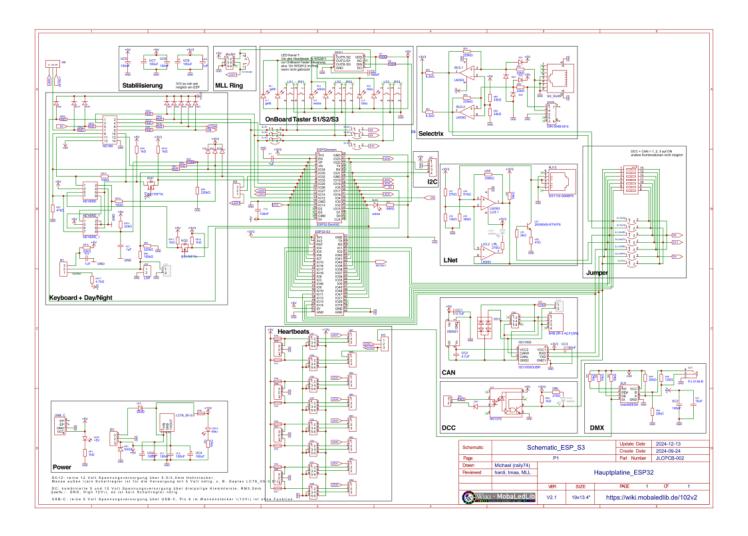
Auf der Matrix werden acht belebte Häuser mit jeweils acht Räumen simuliert Die drei LEDs neben dem Display blinken

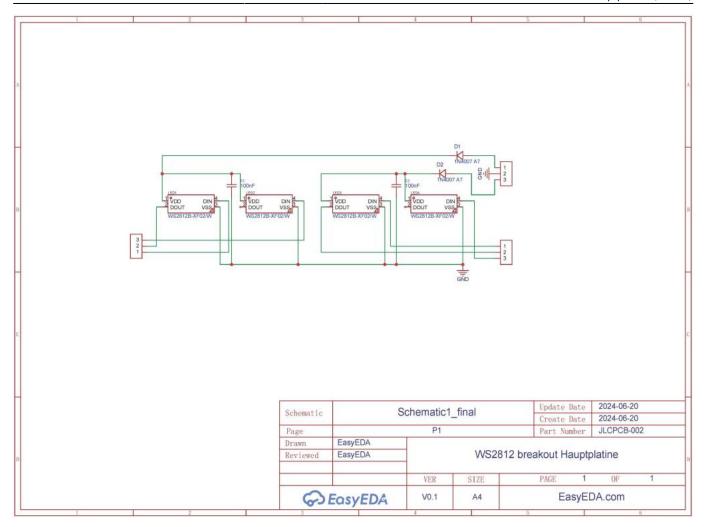
Der Ring leuchtet in HSV Farben

Alle Heartbeats "Ausgang" blinken lila, alle Heartbeats "Eingang" blinken grün. Sollten hier die Farben vertauscht sein ist das nicht schlimm. Gegebenenfalls kann das Breakout gedreht werden

3D-Gehäuse - Hauptplatine ESP32 Beta 2

Eignung für 3D-Drucker: FFF / FDM **** SLA / STL ****




Es sind noch Änderungen nötig. Diese sind bekannt, aber noch nicht umgesetzt. Verwendung auf eigenes Risiko.

Schaltplan

2025/11/17 19:18 25/25 102DE Hauptplatine (Beta 2)

Produktvideos

Ein Erklävideo über die Bestückung der Platine und vieles mehr. Der Dank gilt "Toms Mobawelt"

