MLL010 - LichtMaschine PICO Zero

Das erste einsatzbereite MobaLedLib-Modul mit vielen Möglichkeiten

Bei der LichtMaschine PICO Zero verschmelzen Baugruppen zu einem fertigen Gerät, ohne dass man löten, schrauben oder kleben muss.

Diese Zentrale folgt dem KISS-Prinzip "Keep It Simple, Stupid!" und konzentriert sich dabei auf die wichtigsten Funktionen.

Die LichtMaschine PICO Zero unterstützt **ausschließlich** das DCC-Protokoll, bringt ein integriertes Sound-Modul mit und kann mit den PushButton-Platinen aus Theos Universum unbeleuchtete Taster einlesen.

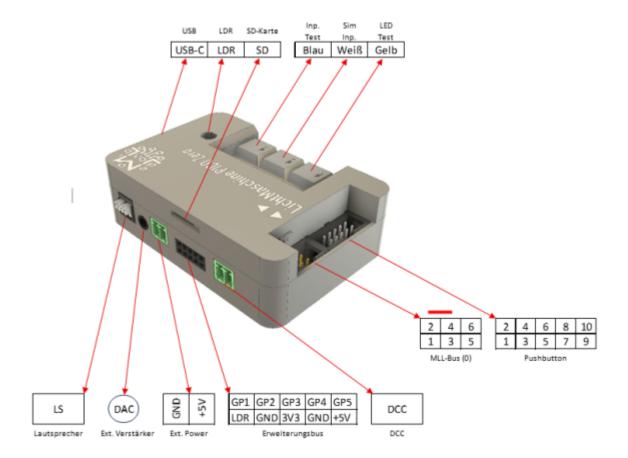
Sie vereinfacht den Einstieg in die MobaLedLib-Welt, da man sie direkt nach dem Auspacken in Betrieb nehmen kann.

Die Highlights

- ✓ Steuerung per DCC
- ✓ Ein LED-Kanal für mehr als 15.000 LEDs
- ✓ integriertes Soundmodul mit DAC-Ausgang
- ✓ integrierter Card-Reader f
 ür Sound-Dateien
- ✓ integrierter LDR zur Helligkeitssteuerung
- ✓ Anschlussmöglichkeit für modifizierte Tasterplatinen
- ✓ Ultrakompakt, nur 8 x 5,4 x 2,4 cm (LxBxH)
- ✓ Fertig montiert geliefert, inklusive Gehäuse
- X Kein CAN, LNet und Selectrix
- ✗ Kein "KEYBRD"-Anschluss für die Push Button-Platinen 300/301

Das Fertiggerät

So sieht die Zentrale im Original aus (Auslieferungszustand)



Diese Hauptplatine unterstützt ausschließlich das Protokoll DCC!!

Die Protokolle CAN, Selectrix, Loco-Net, DMX werden NICHT unterstützt.

Printed on 2025/10/28 06:15 https://wiki.mobaledlib.de/

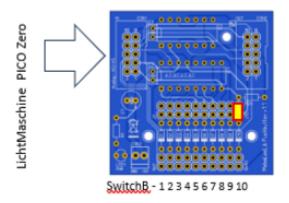
Anschlüsse

- MLL-Bus (0)
- Pushbutton (SwitchB)
 - MLL-Pushbutton (TMaa Version)
 - ∘ 2 x 5-polig über Adapter auch für MLL Platine 300 und 301 geeignet
- **USB-C**, Programmierverbindung, +5V
- Die drei **Standard-MLL-Tasten** mit den entsprechenden **LEDs**
 - Gelb, LED Test ← / L+R=All
 - Weiß, Sim Inp. Long=ESC
 - Blau, Inp. Tes t⇒
- LDR oder Analog Taster (SwitchA), wählbar über einen Schalter auf der Platine
- DCC-Anschluss
- Externer Stromanschluss +5V, Automatische Auswahl USB oder Extern
- MP3-Player, mit SD-Kartensteckplatz
- Lautsprecheranschluss (LS), 8Ω/1W
- Anschluss für externen Verstärker (DAC), Klinkenstecker
- Erweiterungsbus, für fortgeschrittene Anwender!
 - Direkter Zugriff auf RP2040-Zero (Waveshare RP2040-Zero)
 - GP1 bis GP5 Diese Ports können beispielsweise über einen Level-Shifter für den MLL-Bus (1 bis 5) genutzt werden.
 - Die Definition hierfür ist bereits im Program-Generator festgelegt. (ab Version 3.4.0) (Pin 2 bis 6)
 - ∘ +5V (Pin 23)
 - +3,3V (Pin 21)
 - LDR/Analog-Taster(SwitchA) (Pin 17 GP26)

Pushbutton

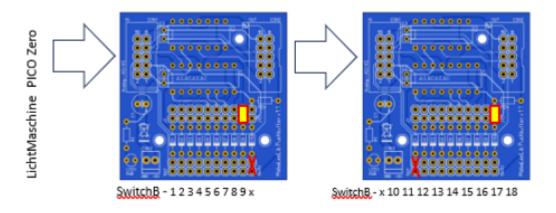
Last

Für die Push-Button-Platinen 300 und 301 ist ein Adapter nötig!!

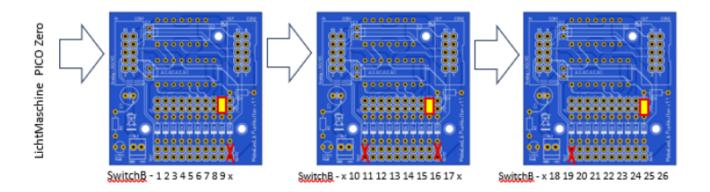


Die PIN-Belegung am Wannenstecker unterscheidet sich zu Theos Tasterplatine !!

Der Adapter ist aktuell in Vorbereitung und wird hier ebenfalls veröffentlicht, sobald verfügbar.


MLL-Pushbutton-platinen können bis zu 10 Stück kaskadiert werden und mit dem 2×5-Pushbuttonanschluss verbunden.

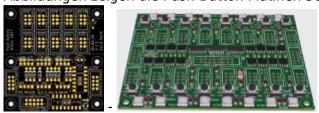
Bei Verwendung nur einer Platine können 10 Schalter oder Taster angeschlossen werden. (Die korrekte Jumper-Einstellung finden Sie im Beispiel


Bei Verwendung von zwei Platinen opfert die erste Platine ihren letzten Anschlusspunkt und die zweite ihren ersten.

Insgesamt ergeben sich so 9 + 9 Anschlusspunkte. (Dies muss durch Jumper gekennzeichnet werden - siehe Beispiel)

Bei mehr als zwei Platinen wiederholt sich dieser Vorgang, wobei die zweite Platine nicht nur ihren ersten, sondern auch ihren letzten Anschlusspunkt opfert.

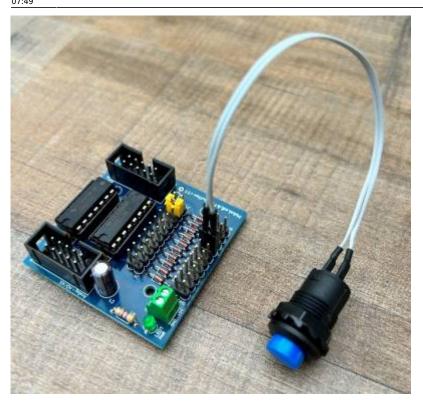
Insgesamt ergeben sich so 9 + 8 + 9 Anschlusspunkte. (Dies muss ebenfalls durch Jumper gekennzeichnet werden – siehe Beispiel)



Siehe auch die Wiki-Seiten zu den Platinen 300 und 301.

Die hier verwendete Methodik ist identisch mit der der hier anzuschließenden MLL-Pushbutton-Platinen.

Daher können diese Platinen ebenso eingesetzt und auch kaskadiert werden.


Abbildungen zeigen die Push-Button Platinen 300 und 301:

Siehe hierzu auch das Dokument: Schalter und Taster einlesen mit der MobaLedLib.pdf

Die Pushbutton-platinen verwenden alle ein Schieberegister, das aus einem CD4017 und einem CD4011 IC besteht. Wer mehr darüber lesen möchte, findet es in der Elektor-Halbleiterzeitschrift von 1984, insbesondere in der Schaltung Nr. 99 (Schaltplan 84506) –" Schieberegister mit Schieberegistern 4017" auf Seite 110 []

Das Foto zeigt einen Taster auf einer Zwischenplatine (der Jumper befindet sich in der vorletzten Position) und platziert auf der siebte Anschluss. (Im oben beschriebenen Beispiel ist dies SwitchB15.) ==== MP3-Player =====

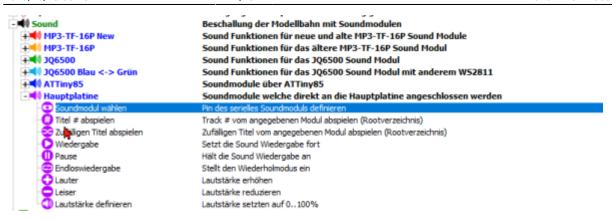
Die integrierten Musikdateien liegen im MP3 oder WAV-Format vor und können auf eine Micro-SD-Karte geladen werden.

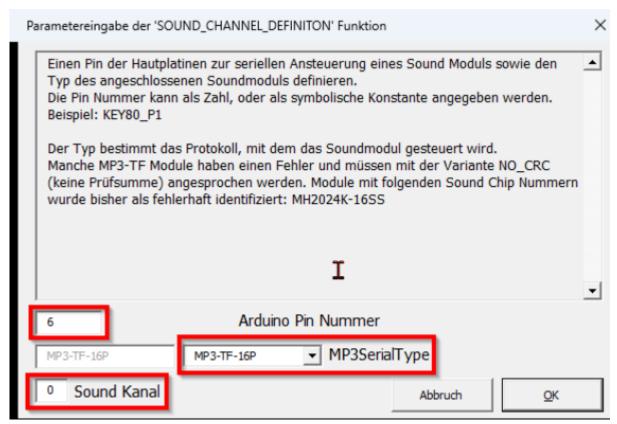
Die gespeicherten Dateien werden in der Reihenfolge abgespielt, in der sie gespeichert wurden, nicht alphabetisch!

Im Datei-Explorer werden sie alphabetisch aufgelistet. Das kann sehr verwirrend sein. Um sie in einem wirklich übersichtlichen Format anzuzeigen,

müssen Sie sie sortieren. Der Haken: Nicht jedes Programm kann das. SD-Sorter kann sie sicher sortieren und verhindert so, dass Sie versehentlich Ihre eigene Festplatte sortieren.

Es sortiert nur die Micro-SD-Karte. Das Programm ist zwar auf Englisch, bietet aber so wenige Funktionen, dass es durchaus zu bewältigen ist.


Auf meinem Windows 11 Rechner (vorher Windows 10) läuft es einwandfrei.


Datei 1 ist die allererste gespeicherte Datei, unabhängig vom Namen. Datei 2 ist die nächste gespeicherte Datei usw.

Sie können ihr logische Namen mit einer vorangestellten Nummer geben, sodass dieselbe Nummer wie im Dateinamen aufgerufen wird. Beispiel: 001 Test.mp3 - dann ist 001 die erste Datei, der Rest ist lediglich ein Name zur Identifizierung.

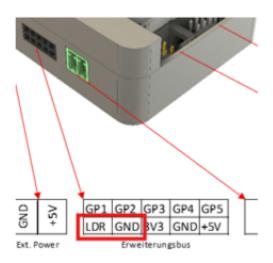
Was bleibt ist, dass im Program-Generator (PG) eine der ersten Zeilen anzeigt, dass das Musikmodul an Port 6 angeschlossen ist. Verbunden mit dem "Mainboard".

==== SOUND CHANNEL DEFINITON(6, MP3-TF-16P) =====

Sehen Sie sich auch das DEMO-Programm an, um zu sehen, wie es verwendet wird.

==== LDR oder Analoge Tasten =====

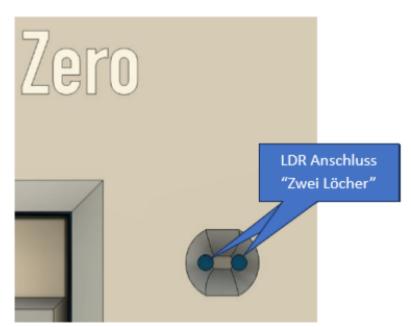
Light Dependent Resistor - Lichtempfindlicher Widerstand.


Die Elektronik ist bereits in die Hardware integriert.

Auf der Platine im Gehäuse befindet sich ein Schalter, mit dem Sie wählen können, ob Sie einen LDR oder analoge Tasten

an den externen Ein-/Ausgang anschließen möchten. Standardmäßig ist ein LDR installiert, der Schalter steht auf LDR,

und Sie können mit dem PG eine funktionierende Anwendung erstellen.



Um analoge Tasten an den externen Eingang anzuschließen, stellen Sie den Schalter auf Sw.A und entfernen Sie den installierten LDR. Sie können ihn einfach mit einer Pinzette herausziehen. Ein Saugnapf oder ein Stück Klebeband funktionieren auch.

Der Wiedereinbau erfolgt in umgekehrter Reihenfolge: Setzen Sie den LDR in die Aussparung oben am Gehäuse ein.

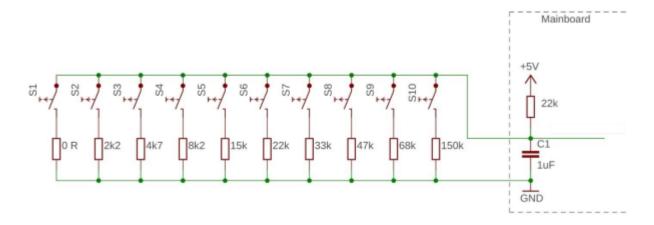
(Es gibt zwei Löcher, die die Beine des LDR zum Anschluss führen.)

Ich habe zufällig entdeckt, dass man Anwendungen, die normalerweise mit einem Taster (SwitchAx) bedient werden,

steuern kann, wenn man den LDR/Analog-Tastenschalter auf Sw.A stellt und den LDR angeschlossen lässt.

indem man sie nun vom eingehenden Licht am LDR abhängig macht.

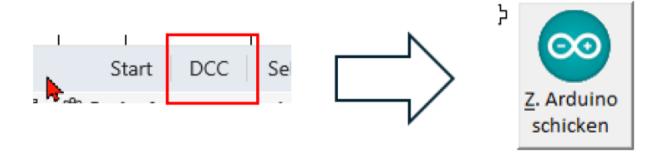
Dann müssen keine externen Tasten mehr angeschlossen werden! Die Lichtintensität wird in einen entsprechenden Tastendruck übersetzt,

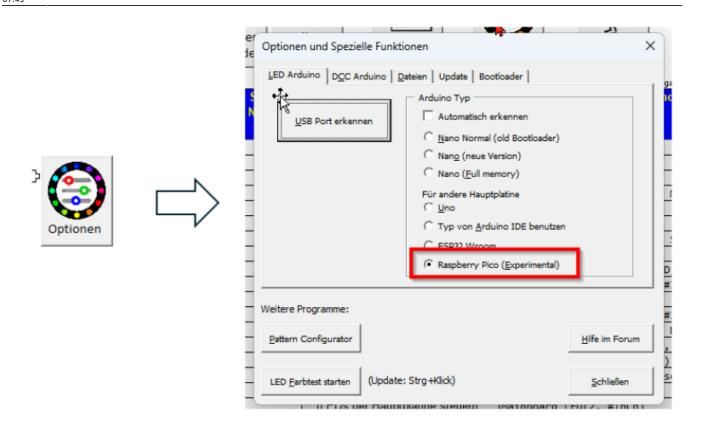

wodurch Sie eine Anwendung starten können. So können Sie beispielsweise das Licht bei Dunkelheit automatisch einschalten,

indem Sie eine Aktion mit der entsprechenden Taste verknüpfen - SwitchAx. (Die Taste "x" hängt

dann von der Lichtmenge ab.)

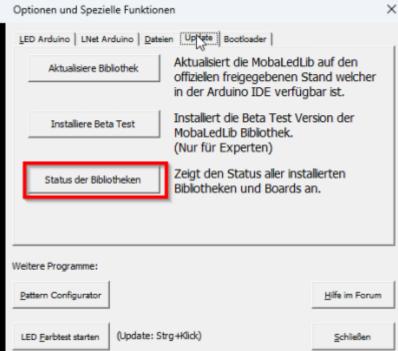
Hinweis: Verwenden Sie für die analogen Tasten denselben Standardsatz von 1 %-Widerständen wie bei anderen MLL-LichtMaschinen.


(Der 22K-Widerstand und der 1uF-Kondensator sind bereits auf dem Mainboard installiert und müssen daher nicht mehr installiert werden)


==== Programmierung =====

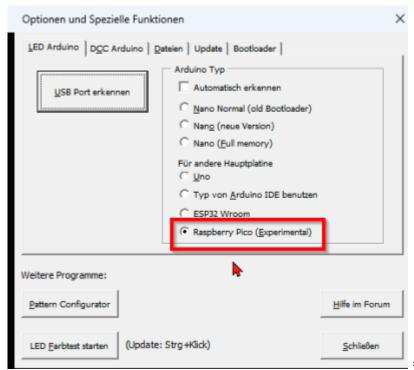
Programmierung der MLL-Anwendung vom Program-Generator (PG) auf die LichtMaschine PICO Zero. Die LichtMaschine PICO Zero wird mit einer vorinstallierten "Demo"-Anwendung geliefert. Wenn Sie die LichtMaschine anschließen und vom PG aus starten, kann eine Anwendung direkt geladen werden (siehe ggf. den Hinweis unten).

Voraussetzung ist, dass Sie im PG über den Reiter "DCC" eine Anwendung schreiben und von dort an den Arduino senden.


Außerdem müssen Sie bei der ersten Verwendung dieses Reiters angeben, dass es sich bei der verwendeten LichtMaschine um einen Raspberry handelt.

Die Beispiel-Datei für die Lichtmaschine PICO Zero kann hier herunter geladen werden.

==== Hinweis: ==== Bei der aktuellen Version des Prog Generators (3.4.0B3) wird der Raspberry in der Auswahl noch nicht angezeigt. Hier muss man einen kleinen Eingriff vornehmen: Nach Klick auf "Optionen" das Register "Update" auswählen und den Button "Status der Bibliotheken"

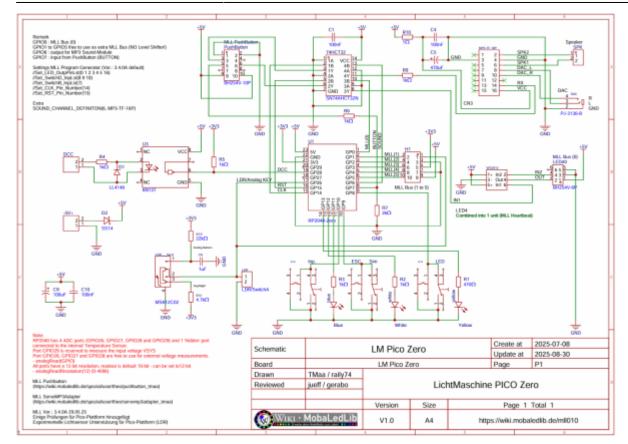

anklicken. Damit öffnet sich die Seite mit

den allen Bibliotheken. Hier in der Zeile mit dem rp2040 in der vordersten Spalte einen Haken setzen (einfach einmal rein klicken) und den Button "Install selected" betätigen.

Dann werden einige Bibliotheken

installiert. Anschließend dann der Raspberry ausgewählt werden.

==== Das Innenleben =====



Der weiße Pfeil zeigt auf den Umschalter

LDR / Analoge Taster.

==== Schaltplan =====

Das Skript für diese Anleitung wurde uns von Theo zur Verfügung gestellt. Gestaltung und Umsetzung von fromue

24.08.2025 by fromue

From

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

Permanent link:

Last update: 2025/09/02 07:49

