Fehlersuche bei den Erweiterungen

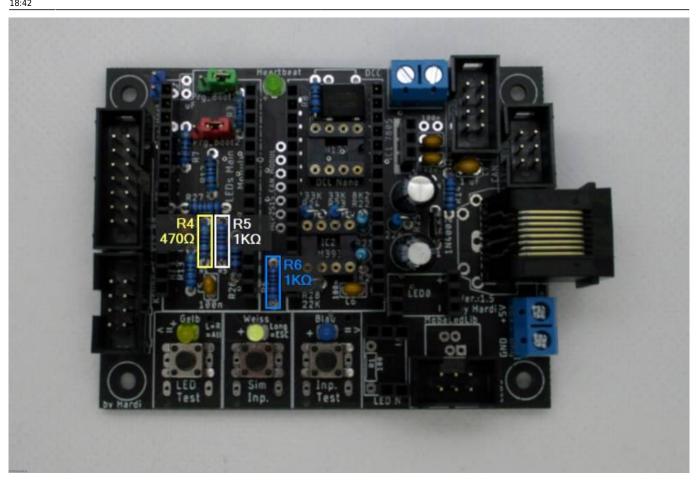
von der Hauptplatine (Ver. 1.5 - Ver 1.7)

Diese Testanleitung ist in mehrere Abschnitte unterteilt, da je nach Bestückung andere Tests gemacht werden müssen. Dabei erfolgt nach Möglichkeit ein Test nur einmalig.

Werkzeug

- Digitales Multimeter mit Widerstands- und Spannungsmessfunktion, sowie nach Möglichkeit mit Durchgangsmessung
- Messleitungen mit Spitzen
- Messleitungen mit Stecker und Buchsen

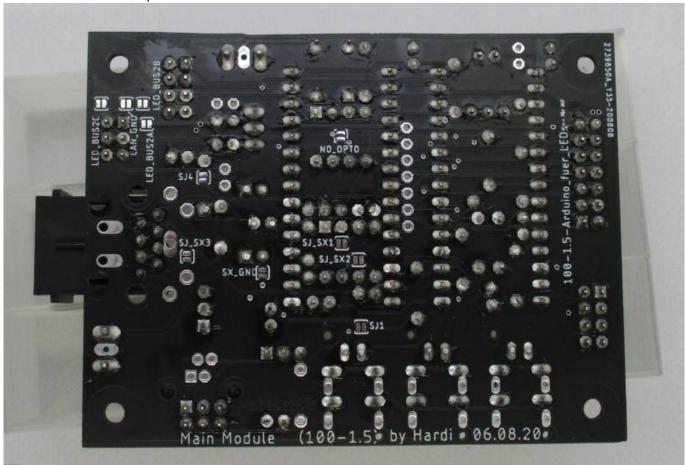
Übersicht der Anleitungen


- Erweiterung "Taster für Funktionstests und Einstellung der Servos"
- Erweiterung "Taster Analog & PushButton 4017"

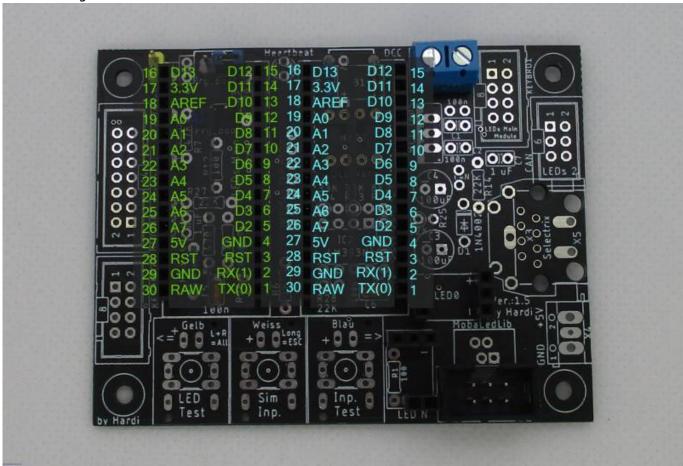
Erweiterung Taster onBoard

Sichtprüfung

1. Kontrolle Oberseite


Bei der Sichtprüfung werden die Widerstände auf die richtigen Werte überprüft. Hilfreich ist dabei die Abbildung, wo die jeweils verbauten Werte ersichtlich sind.

2. Kontrolle Unterseite


Auch die Unterseite sollte kontrolliert werden. Dort ist vor allem zu prüfen, ob es keine ungewollten Verbindungen zwischen Lötstellen gibt und ob auch alle Lötstellen sauber und ordentlich ausgeführt sind.

Ein großes Augenmerk ist dabei auf die kleinen Durchkontaktierungen zu legen, da diese sehr leicht mit benachbarten Lötpunkten verbunden werden können.

Überblick und Pins

Da die Pinbelegungen evtl nicht mehr klar ersichtlich sind, hier die Pinbeschriftungen und Funktionen in der richtigen Zählweise.

Elektrische Prüfung

Die Durchgangsprüfung und die Messung der Widerstände erfolgt ohne eingesetzte Module und ICs sowie ohne angeschlossene Kabel.

1. Prüfung der Taster

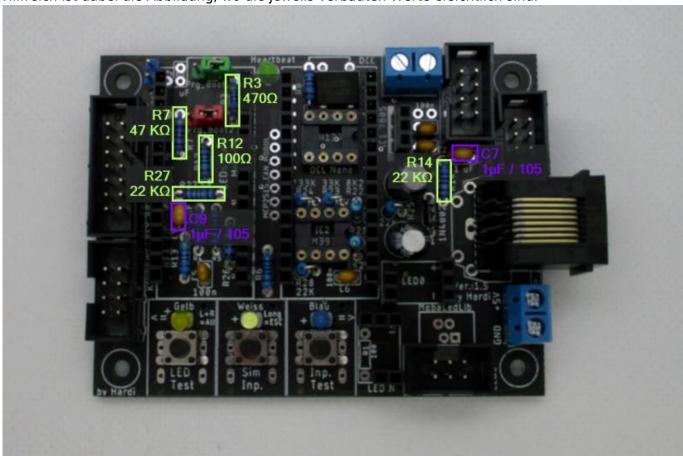
Die Prüfung der Taster kann entweder mit der Funktion "Durchgangsprüfung" in jedem guten Multimeter gemacht werden, oder wer diese Funktion nicht hat, verwendet die Funktion zum Widerstand messen (0 - 1,2 Ω = Okay, Werte die darüber sind, deuten auf Kontaktprobleme hin.) Eine Verbindung ist nur vorhanden, wenn der jeweilige Taster gedrückt ist. Das schwarze Kabel des Messgerät kommt dabei in Pin 4 in die Buchsenleiste vom LED-Nano.

Taster	Pin Buchsenleisten LED-Nano
GELB (links)	10
WEISS (mitte)	11
BLAU (rechts)	12

__-

2. Prüfung der LEDs

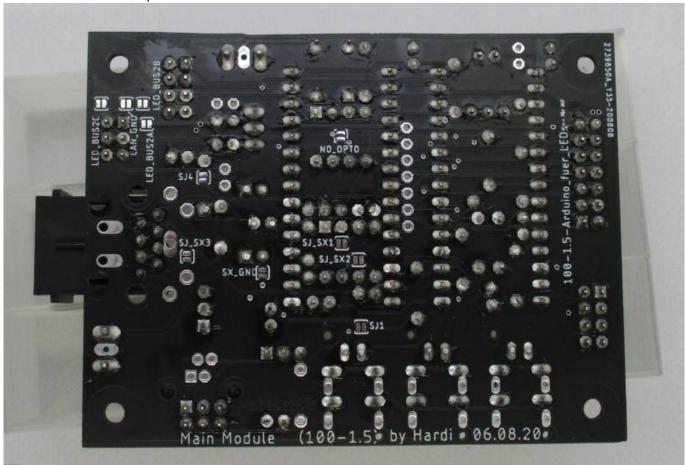
Hierfür versorgen wir die Hauptplatine über den Wannenstecker mit Energie und stecken ein kurzes Jumperkabel in den Pin 27 (VCC) der LED-Nano-Buchsenleiste. Nacheinder können wir dann die folgenden Pins mit 5V versorgen und damit die LED zum leuchten bringen.


LED	Pin Buchsenleisten LED-Nano	
GELB (links)	6	
WEISS (mitte)	7	
BLAU (rechts)	8	

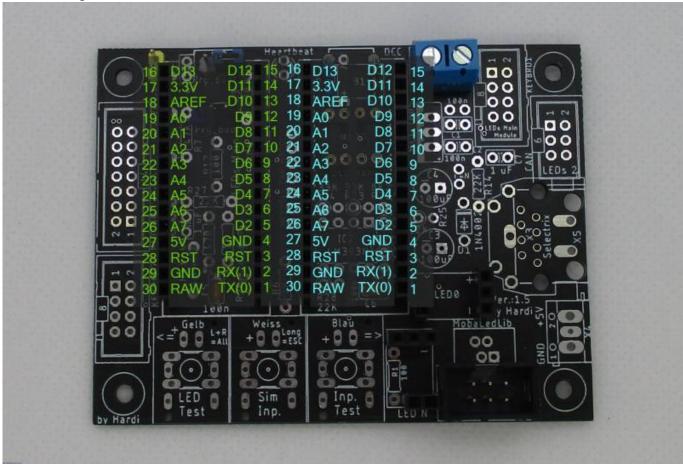
Erweiterung Taster - Analog & PushButton 4017

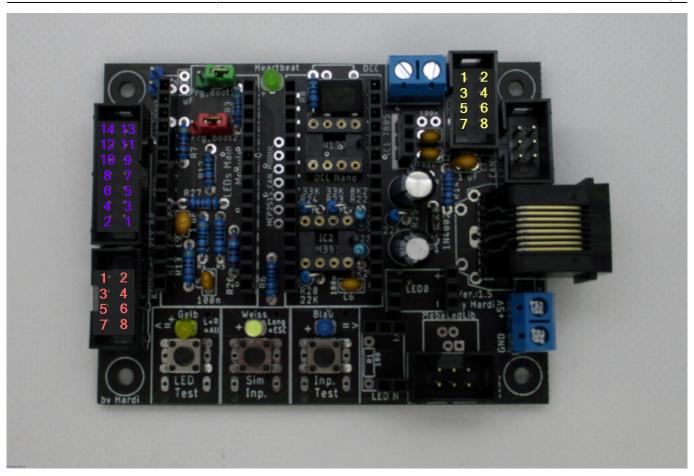
Sichtprüfung

1. Kontrolle Oberseite


Bei der Sichtprüfung werden die Widerstände auf die richtigen Werte überprüft. Hilfreich ist dabei die Abbildung, wo die jeweils verbauten Werte ersichtlich sind.

2. Kontrolle Unterseite


Auch die Unterseite sollte kontrolliert werden. Dort ist vor allem zu prüfen, ob es keine ungewollten Verbindungen zwischen Lötstellen gibt und ob auch alle Lötstellen sauber und ordentlich ausgeführt sind.


Ein großes Augenmerk ist dabei auf die kleinen Durchkontaktierungen zu legen, da diese sehr leicht mit benachbarten Lötpunkten verbunden werden können.

Überblick und Pins

Da die Pinbelegungen evtl nicht mehr klar ersichtlich sind, hier die Pinbeschriftungen und Funktionen in der richtigen Zählweise.

Wannenstecker "KEY_80" (violett)

1 = D2

2 = D7

3 = D8

4 = D9

5 = D10

6 = D11

7 = D12

8 = A1

9 = Buttons (A2)

10 = RESET K

11 = LEDS K SDA (A4)

12 = SCL (A5)

13 = VCC

14 = GND

Wannenstecker "KEYBRD" (pastellrot)

1 = LEDS K SDA (IN)

 $2 = LEDS_K_SDA (OUT)$

3 = VCC

4 = GND

5 = CLOCK K (IN)

6 = RESET K

7 = Buttons (A2)

 $8 = CLOCK_K (OUT)$

Wannenstecker "KEYBRD1" (gelb)

 $1 = LEDS_K_SDA (IN)$

2 = N.C.

3 = VCC

4 = GND

 $5 = CLOCK_K (IN)$

6 = RESET K

7 = Buttons (A2)

8 = Kanal Analoge Taster (A6)

Elektrische Prüfung

Die Durchgangsprüfung und die Messung der Widerstände erfolgt ohne eingesetzte Module und ICs sowie ohne angeschlossene Kabel.

1. Durchgangsprüfung

Die Durchgangsprüfung kann entweder mit der Funktion "Durchgangsprüfung" in jedem guten Multimeter gemacht werden, oder wer diese Funktion nicht hat, verwendet die Funktion zum Widerstand messen (0 - $1,2 \Omega = 0$ kay, Werte die darüber sind, deuten auf Kontaktprobleme hin.)

	Pin Wannenstecker "KEY_80"	Verbindung 1	weitere Verbindungen
01		Buchsenleiste LED-Nano – Pin 5	
02		Buchsenleiste LED-Nano – Pin 10	
03		Buchsenleiste LED-Nano – Pin 11	
04		Buchsenleiste LED-Nano – Pin 12	
05		Buchsenleiste LED-Nano – Pin 13	
06		Buchsenleiste LED-Nano – Pin 14	
07		Buchsenleiste LED-Nano – Pin 15	
08		Buchsenleiste LED-Nano – Pin 20	
09		Buchsenleiste LED-Nano – Pin 21	Wannenstecker "KEYBRD" – Pin 7 Wannenstecker "KEYBRD1" – Pin 7
10		Buchsenleiste LED-Nano – Pin 22	Wannenstecker "KEYBRD" – Pin 6 Wannenstecker "KEYBRD1" – Pin 6
11		Wannenstecker "KEYBRD" – Pin 1	
12		Buchsenleiste LED-Nano – Pin 24	
13		Buchsenleiste LED-Nano – Pin 27	Wannenstecker "KEYBRD" - Pin 3 Wannenstecker "KEYBRD1" - Pin 3
14		Buchsenleiste LED-Nano – Pin 4	Buchsenleiste LED-Nano – Pin 29 Wannenstecker "KEYBRD" – Pin 4 Wannenstecker "KEYBRD1" – Pin 4

Pin Wannenstecker "KEYBRD1"	Verningling	Bemerkungen
1	Wannenstecker "KEYBRD" – Pin 2	
5	Wannenstecker "KEYBRD" – Pin 8	
8	Buchsenleiste LED-Nano – Pin 25	Nur wenn Lötjumper "SJ4" geschlossen ist

2. Widerstandsmessung

roter Pin	schwarzer Pin	Widerstandswert
Buchsenleiste LED-Nano – Pin 4	Wannenstecker "KEY_80" - Pin 9	47,00 ΚΩ
Buchsenleiste LED-Nano – Pin 4	Wannenstecker "KEYBRD" – Pin 7	47,00 ΚΩ
Buchsenleiste LED-Nano – Pin 4	Wannenstecker "KEYBRD1" – Pin 7	47,00 ΚΩ
Buchsenleiste LED-Nano – Pin 27	Wannenstecker "KEY_80" - Pin 12	22,00 ΚΩ
Buchsenleiste LED-Nano – Pin 27	Buchsenleiste LED-Nano – Pin 26	Je nach Verwendungszweck hat dieser Testpunkt verschiedenen Werte. - 4,7 KΩ (LDR5506) - 22,00 KΩ (für Analogtaster) - 33,00 KΩ (LDR Default)

3. Prüfung der LED und Spannungsversorgung

LED

Hierfür versorgen wir die Hauptplatine über den Wannenstecker mit Energie und stecken ein kurzes Jumperkabel in den Pin 27 (VCC) der LED-Nano-Buchsenleiste. Nun können wir dann den folgenden Pin mit 5V versorgen und damit die LED zum leuchten bringen.

LED	Pin Buchsenleisten LED-Nano
Heartbeat (zwischen den beiden Arduinos)	22

Spannungsversorgung

Hierfür stecken wir das schwarze Kabel vom Messgerät in einen der folgenden, möglichen Kontakte ein.

Stiftleiste "Tag/Nacht" - Pin 1
Buchsenleisten LED-Nano – Pin 4
Buchsenleisten LED-Nano - Pin 29
Sockel LED #1 - Pin 1
Sockel LED #1 - Pin 5
Sockel LED #n - Pin 1
Sockel LED #n - Pin 5

Mit dem roten Kabel können nun an den folgenden Punkten die Spannungen kontrolliert werden.

Kontakt	Spannung
Wannenstecker "KEY_80" - Pin 13	4,65 - 5,10 Volt
Wannenstecker "KEYBRD" – Pin 3	4,65 - 5,10 Volt

Kontakt	Spannung
Wannenstecker "KEYBRD1" - Pin 3	4,65 - 5,10 Volt
Wannenstecker "KEY_80" - Pin 12	4,50 - 4,90 Volt
Wannenstecker "KEYBRD1" - Pin 8	4,50 - 4,90 Volt

From:

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

Permanent link:

https://wiki.mobaledlib.de/anleitungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplatine_v1-6_erweiterungen/fehlersuche/platinen/hauptplat

Last update: 2021/04/21 18:42

