

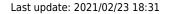
Diese Seite ist noch in der Entwicklung und daher sind die Informationen und Daten noch fehlerhaft. Verwendung auf eigene Gefahr.

Einstellung der Steppertreiberspannung

notwendige Werkzeuge

- Multimeter mit einer hohen Spannungsauflösung im Bereich bis 2V
- Messleitungen für das Messgerät
- Schraubendreher mit passender Spitze für das Drehpoti

Spannung ermitteln


notwendige Werte des Motors ermitteln

Vor der Berechnung steht erstmal das ermitteln des Motorstrom. Dieser steht bei den meisten Motoren im Datenblatt. Hier auf der Seite wird als Beispiel der Standardstepper "28BYJ-48" verwendet, welchen die meisten vermutlich daheim haben. Dieser hat die folgenden Werte:

Rated voltage	5VDC
Number of Phase	4
Speed Variation Ratio	1/64
Stride Angle	5.625° /64
Frequency	100Hz
DC resistance	50Ω±7%(25°C)
Idle In-traction Frequency	> 600Hz
Idle Out-traction Frequency	> 1000Hz
In-traction Torque	>34.3mN.m(120Hz)
Self-positioning Torque	>34.3mN.m
Friction torque	600-1200 gf.cm
Pull in torque	300 gf.cm
Insulated resistance	>10MΩ(500V)
Insulated electricity power	600VAC/1mA/1s
Insulation grade	A
Noise	<35dB(120Hz,No load,10cm)

Da in der Tabelle leider nicht die "Current" / Ampere aufgeführt sind, müssen wir diese selber berechnen.

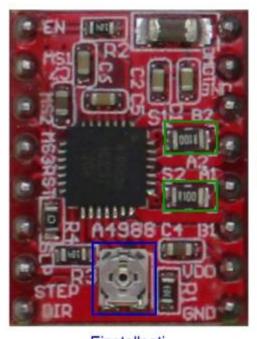
Wichtig aus dieser Tabelle sind für uns daher nur zwei Zeilen.

Rated voltage	5VDC
DC resistance	50Ω±7%(25°C)

Daraus lässt sich der maximale Strom berechnen.

Die Formal dafür lautet I = U/R

Mit den Werten aus der Tabelle oben sieht es dann so aus:


I = U/R = 5/50 = 0.1A

Nun haben wir den benötigten Wert für die Berechnung der Referenzspannung der veschiednen Motortreiber.

Um den Steppermotor vor Überlastung zu schützen, verwenden wir nur 80% der zulässigen Leistung. Dies ist in den Formel unten mit dem 0.8 gemeint.

A4988

Für die Berechnung ist der Messwiderstand des Steppertreibers entscheident. Das Modul A4988 gibt es in verschiedenen Versionen mit Widerständen von 0.05Ω und 0.3Ω . Den Widerstand kann man meistens direkt auf den beiden SMD-Widerständen ablesen. Diese befinden sich meistens direkt bei den Anschlüssen für die Motor-Spulen.

Messwiderstände 0,10Ω

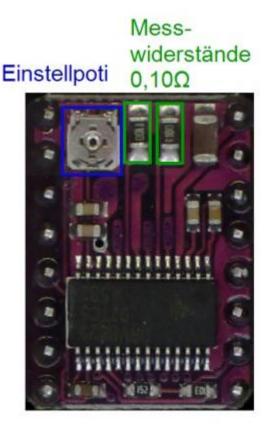
Einstellpoti

Kennung	Wert
R05 oder R050	0.05Ω
R10 oder R100	0.10Ω
R20 oder R200	0.20Ω
R30 oder R300	0.30Ω

Das Modul hier im Beispiel hat einen Wert von 0.10Ω

Die Formel für die Berechnung bei den A4988-Modulen lautet:

https://wiki.mobaledlib.de/ Printed on 2025/10/16 19:33


Ampere des Motor x Leistungsfaktor x 8 x Rs = Vref

Mit den Werten bestückt ergibt sich dann

$$0.1 \times 0.8 \times 8 \times 0.1 = 0.064V = 64mV$$

DRV8825

Für die Berechnung ist der Messwiderstand des Steppertreibers entscheident. Das Modul DRV8825 gibt es normalerweise nur mit einem Messwiderstand von 0.10Ω . Sollte man ein Modul mit einem abweichenden Widerstand haben, muss die Formel entsprechend angepasst werden.

Kennung	Wert	Faktor
R10 oder R100	0.10Ω	1
R20 oder R200	0.20Ω	0.5

Das Modul hier im Beispiel hat den Standwert von 0.10Ω

Die Formel für die Berechnung bei den DRV8825-Modulen lautet:

Ampere des Motor x Leistungsfaktor x Faktor / 2 = Vref

Mit den Werten bestückt ergibt sich dann

 $0.1 \times 0.8 \times 1 / 2 = 0.035V = 35mV$

TMC2208

Bei dem Steppertreiber TMC2208 ist das Berechnen etwas komplizierter, da das Modul den Effektivstrom für Berechnung verwendet.

Die Formel für die Berechnung bei den TMC2208-Modulen lautet:

```
Maximaler Effektivstrom = Maximaler Strom (0.1A * 0.80) / 1.41 --> 1.41 = Wurzel aus 2 Referenz-Spannung TMC2208 = (Maximaler Effektivstrom * 2.5V) / 1.77A
```

Mit den Werten bestückt ergibt sich dann

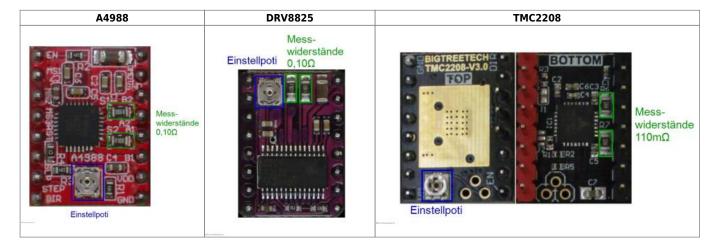
```
Maximaler Effektivstrom = 0.080 / 1.41 = 0.0567 V Referenz-Spannung TMC2208 = 0.0567 * 2.5V / 1.77A = 0.080V = 80mV
```

Spannung einstellen

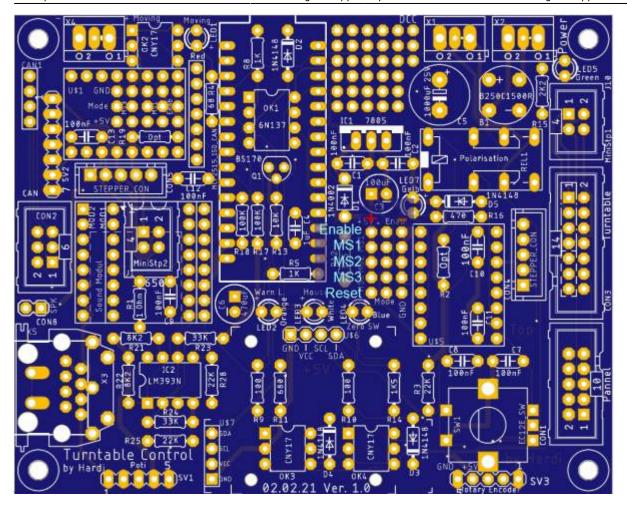
Die Spannung der Schrittmotorentreiber muss auf den verwendeten Schrittmotor eingestellt werden. Dazu das Steppermodul in die Drehscheibenplatine oder das 4-fach-Steppermodul einstecken und die Platine per USB mit Strom versorgen. Die normale Stromversorgung vom Netzteil "POWER" muss vorher getrennt werden.

Bei den Steppermodulen bitte auf die Einbaurichtung achten. Sollten die Module falsch herum eingesteckt werden, für dies meistens zu ihrer Zerstörung und im schlimmsten Fall ist danach auch die Platine defekt. Als Ausrichtungshilfe hat sich bewährt den "ENABLE-Pin" zu verwenden. Dieser ist immer an der gleichen Stelle und meistens markiert als "EN" oder "ENA". Die Enable-Pins der beiden Steppersteckplätze auf der Drehscheibenplatine, findet Ihr auf dem Bild markiert.

Nun verbindet ihr den Minuspol eures Multimeters mit einem Massepol auf der Platine. Nachfolgend sind alle möglichen Massepunkte markiert, auch wenn diese durch Module verdeckt sein könnten.


https://wiki.mobaledlib.de/ Printed on 2025/10/16 19:33

4-Fach-Stepperplatine


Das Bild wird später nachgereicht, da die Platine noch in der Entwicklungsabteilung liegt.

Zum Messen der Referenzspannung halten wir nun die rote Spitze an das Poti der Stepperplatinen. Dieses ist aus Metall und liegt auf dem Spannungsniveau des Vref-Pins.

Jumper für Stepperboards

Die empfohlene Jumpereinstellungen sind in den nachfolgenden Tabellen hervorgehoben.

A4988

MS1	MS2	MS3	Microstep Auflösung
GND	GND	GND	1/1
VCC	GND	GND	1/2
GND	VCC	GND	1/4
VCC	VCC	GND	1/8
VCC	VCC	VCC	1/16

DRV8825

MS1	MS2	MS3	Microstep Auflösung
GND	GND	GND	1/1
VCC	GND	GND	1/2
GND	VCC	GND	1/4
VCC	VCC	GND	1/8
GND	GND	VCC	1/16
VCC	VCC	VCC	1/32

https://wiki.mobaledlib.de/ Printed on 2025/10/16 19:33

TMC220x

MS1	MS2	Microstep Auflösung
GND	GND	1/8
VCC	GND	1/2
GND	VCC	1/4
VCC	VCC	1/16

RES (PDN_UART)		Funktion	
GND	automatische	Stromabschaltung	bei Stillstand aktiviert
VCC	automatische St	romabschaltung bei	Stillstand deaktiviert

From:

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

Permanent link:

https://wiki.mobaled lib.de/hilfestellungen/stepper?rev=1614101513

Last update: 2021/02/23 18:31

